Displaying all 6 publications

Abstract:
Sort:
  1. Yanagihara M, Tsuji T, Yusop MZ, Tanemura M, Ono S, Nagami T, et al.
    ScientificWorldJournal, 2014;2014:309091.
    PMID: 25302320 DOI: 10.1155/2014/309091
    A vacuum ultraviolet (VUV) field emission lamp was developed by using a neodymium ion doped lutetium fluoride (Nd(3+) : LuF3) thin film as solid-state phosphor and carbon nanofiber field electron emitters. The thin film was synthesized by pulsed laser deposition and incorporated into the lamp. The cathodoluminescence spectra of the lamp showed multiple emission peaks at 180, 225, and 255 nm. These emission spectra were in good agreement with the spectra reported for the Nd(3+) : LuF3 crystal. Moreover, application of an acceleration voltage effectively increased the emission intensity. These results contribute to the performance enhancement of the lamp operating in the VUV region.
    Matched MeSH terms: Neodymium/chemistry*
  2. Tan KH, Chen YW, Van CN, Wang H, Chen JW, Lim FS, et al.
    ACS Appl Mater Interfaces, 2019 Jan 09;11(1):1655-1664.
    PMID: 30561192 DOI: 10.1021/acsami.8b17758
    The ability of band offsets at multiferroic/metal and multiferroic/electrolyte interfaces in controlling charge transfer and thus altering the photoactivity performance has sparked significant attention in solar energy conversion applications. Here, we demonstrate that the band offsets of the two interfaces play the key role in determining charge transport direction in a downward self-polarized BFO film. Electrons tend to move to BFO/electrolyte interface for water reduction. Our experimental and first-principle calculations reveal that the presence of neodymium (Nd) dopants in BFO enhances the photoelectrochemical performance by reduction of the local electron-hole pair recombination sites and modulation of the band gap to improve the visible light absorption. This opens a promising route to the heterostructure design by modulating the band gap to promote efficient charge transfer.
    Matched MeSH terms: Neodymium
  3. Wani AA, Khan AM, Manea YK, Salem MAS, Shahadat M
    J Hazard Mater, 2021 08 15;416:125754.
    PMID: 33813294 DOI: 10.1016/j.jhazmat.2021.125754
    Neodymium-doped polyaniline supported Zn-Al layered double hydroxide (PANI@Nd-LDH) nanocomposite has been prepared via an ex-situ oxidative polymerization process. The as-prepared nanocomposite shows selective fluorescence detection and adsorption of hexavalent chromium Cr(VI) within a short period. The fluorescence intensity of PANI@Nd-LDH decreases linearly with Cr(VI) concentrations ranging from 200 ppb to 1000 ppb with a limit of detection (LOD) of 1.5 nM and a limit of quantification (LOQ) of 96 nM. The sensing mechanism can be ascribed by the inner filter effect of Cr(VI), the intercalation of Cr(VI) within the intergallery region of LDH, and the synergistic affinity of metal ions along with the polymer chain for Cr(VI). The adsorption performance of PANI@Nd-LDH nanocomposite is evaluated for Cr(VI) from wastewaters, which displayed high removal capacity towards Cr(VI) (219 mg/g) as compared on bare Nd-LDH (123 mg/g) and LDH (88 mg/g) respectively. The adsorption of Cr(VI) on PANI@Nd-LDH depends on the pH of the aqueous solution. The adsorption isotherm and kinetics are supported by the Langmuir model and pseudo-second-order model, respectively. Owing to the highly sensitive detection and adsorption of Cr(VI) from aqueous water samples demonstrated the potential application of PANI@Nd-LDH as an excellent environmental probe can be exploited.
    Matched MeSH terms: Neodymium
  4. Meor Yusoff, M.S., Masliana Muslimin, Latifah Amin
    MyJurnal
    Tin slag was collected from a slag dump in the Penang Island and was analysed for its elemental composition using microfocus XRF with a 300ȝm x-ray spot diameter. The tin slag sample was analysed direct without any sample treatment and analysis was conduct on four different spots. The result gives different elemental composition on these different spots. Among the elements analysed are Al2O3, SiO2, SnO2, CaO, TiO2, Nd2O3, MnO, Fe2O3, TaO, W2O3, As2O3, ThO2, U3O8, ZrO2 and Nb2O5. Elemental mapping was also done to show the distribution of these elements in the sample.
    Matched MeSH terms: Neodymium
  5. Kusrini E, Saleh MI, Lecomte C
    Spectrochim Acta A Mol Biomol Spectrosc, 2009 Sep 15;74(1):120-6.
    PMID: 19560960 DOI: 10.1016/j.saa.2009.05.024
    (1)H NMR evidence for direct coordination between the Ln(III) ion and the oxygen atoms of the pentaethylene glycol (EO5) ligand and the picrate anion (Pic) in [Ln(Pic)(2)(EO5)][Pic] {Ln=Ce and Nd} complexes are confirmed by single X-ray diffraction. No dissociation of Ln-O bonds in dimethyl sulfoxide-d solution was observed in NMR studies conducted at different temperatures ranging 25-100 degrees C. The Ln(III) ion was chelated to nine oxygen atoms from the EO5 ligand in a hexadentate manner and the two Pic anions in each bidentate and monodentate modes. Both compounds are isostructural and crystallized in monoclinic with space group P2(1)/c. Coordination environment around the Ce1 and Nd1 atoms can be described as tricapped trigonal prismatic and monocapped square antiprismatic geometries, respectively. The crystal packing of the complexes have stabilized by one dimensional (1D) chains along the [001] direction to form intermolecular O-Hcdots, three dots, centeredO and C-Hcdots, three dots, centeredO hydrogen bonding. The molar conductance of the complexes in DMSO solution indicated that both compounds are ionic. The complexes had a good thermal stability. Under the UV-excitation, these complexes exhibited the red-shift emission.
    Matched MeSH terms: Neodymium/chemistry*
  6. Hasan M, Hanafiah MM, Alhilfy IHH, Aeyad Taha Z
    PeerJ, 2021;9:e10614.
    PMID: 33520446 DOI: 10.7717/peerj.10614
    Background: Laser applications in agriculture have recently gained much interest due to improved plant characteristics following laser treatment before the sowing of seeds. In this study, maize seeds were exposed to different levels of laser treatment prior to sowing to improve their field performance. The aim of this study is to evaluate the impact of pre-sowing laser photobiomodulation on the field emergence and growth of treated maize seeds.

    Methods: The maize seeds were first photobiomodulated with two lasers: 1) a helium-neon (He-Ne) red laser (632.8 nm), and 2) a neodymium-doped yttrium aluminum garnet (Nd:YAG) green laser (532 nm). Following three replications of randomized complete block design (RCBD), four irradiation treatments were applied (45 s, 65 s, 85 s, and 105 s) at two power intensities (2 mW/cm2 and 4 mW/cm2).

    Results: Based on the results, maize seeds pretreated with a green laser and 2 mW/cm2 power intensity for 105 s exhibited the highest rate of seed emergence (96%) compared to the untreated control seeds with a lower seed emergence rate (62.5%). Furthermore, maize seeds treated with a red laser for 45 s showed an increased vigor index compared to the other treatment options and the control (P 

    Matched MeSH terms: Neodymium
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links