Displaying all 7 publications

Abstract:
Sort:
  1. Tan YH, Lim CS, Wong KH, Sabaratnam V
    Int J Med Mushrooms, 2021;23(6):1-11.
    PMID: 34369729 DOI: 10.1615/IntJMedMushrooms.2021038578
    Neuritin is important in neuritogenesis, neurite arborization, and neurite extension. Lignosus rhinocerotis sclerotia extracts and nerve growth factor (NGF) have been well documented to possess positive neurite stimulatory effects. However, the correlation of neuritin expression with neurite outgrowth of L. rhinocerotis and NGF cotreatment of PC12 cells remains unknown. Thus, the present study investigated neuritin expression in PC12 cells treated with 5 ng/mL of NGF and L. rhinocerotis extracts (20-1280 μg/mL) concurrently for 48 h. The neurite outgrowth score was quantitated, and total protein was harvested for enzyme-linked immunosorbent assay. There was a significant difference (P = 0.051) in neuritin protein abundance in 640 μg/mL of L. rhinocerotis aqueous cotreatment with 5 ng/mL of NGF-treated cells (5 ± 0.39 ng/mL) and 50 ng/mL of NGF-treated PC12 cells (5 ± 0.48 ng/mL) compared to untreated cells (1.9 ± 0.65 ng/ mL), with an average neurite length of 98 ± 3.66, 106 ± 3.00, and 73 ± 4.79 μm, respectively. Expression of microtubule element β3 tubulin was increased in PC12 cells treated with 50 ng/mL of NGF (3.5 ± 0.21-fold) and also cells cotreated with 640 μg/mL of extract and 5 ng/mL of NGF (4.9 ± 0.29-fold) compared to untreated cells. Upregulation of β3 tubulin expression in this study confirmed the elongation of PC12 cell processes. Correlation analysis showed that neuritin protein abundance is positively proportional to the average neurite length in PC12 cells cotreated with L. rhinocerotis extract and 5 ng/mL of NGF. This study highlights that neuritin modulation is involved in neurite outgrowth induced by L. rhinocerotis treatment. To our knowledge, this is the first report to show that tiger milk mushroom extracts induce neuritin expression.
    Matched MeSH terms: Neuronal Outgrowth
  2. Yeong KY, Khaw KY, Takahashi Y, Itoh Y, Murugaiyah V, Suzuki T
    Bioorg Chem, 2020 01;94:103403.
    PMID: 31711765 DOI: 10.1016/j.bioorg.2019.103403
    Studies have suggested that sirtuin inhibition may have beneficial effects on several age-related diseases such as neurodegenerative disorders and cancer. Garcinia mangostana is a well-known tropical plant found mostly in South East Asia with several positive health effects. Some of its phytochemicals such as α-mangostin was found to be able to modulate sirtuin activity in mice and was implicated with inflammation, diabetes and obesity. However, comprehensive studies on sirtuin activity by the prenylated xanthones extracted from Garcinia mangostana have yet to be reported. The present study led to the discovery and identification of γ-mangostin as a potent and selective SIRT2 inhibitor. It was demonstrated that γ-mangostin was able to increase the α-tubulin acetylation in MDA-MD-231 and MCF-7 breast cancer cells. It was also found to possess potent antiproliferative activity against both cell lines. In addition, it was able to induce neurite outgrowth in the N2a cells.
    Matched MeSH terms: Neuronal Outgrowth
  3. Eik LF, Naidu M, David P, Wong KH, Tan YS, Sabaratnam V
    PMID: 22203867 DOI: 10.1155/2012/320308
    A national treasure mushroom, Lignosus rhinocerus, has been used to treat variety of ailments by local and indigenous communities in Malaysia. The aim of this study was to investigate the potential of the most valuable part of L. rhinocerus, the sclerotium, on neurite outgrowth activity by using PC-12Adh cell line. Differentiated cells with one thin extension at least double the length of the cell diameter were scored positive. Our results showed that aqueous sclerotium L. rhinocerus extract induced neurite outgrowths of 24.4% and 42.1% at 20 μg/mL (w/v) of aqueous extract alone and a combination of 20 μg/mL (w/v) aqueous extract and 30 ng/mL (w/v) of NGF, respectively. Combination of NGF and sclerotium extract had additive effects and enhanced neurite outgrowth. Neuronal differentiation was demonstrated by indirect immunofluorescence of neurofilament protein. Aqueous sclerotium extract contained neuroactive compounds that stimulated neurite outgrowth in vitro. To our knowledge this is the first report on neurite-stimulating activities of L. rhinocerus.
    Matched MeSH terms: Neuronal Outgrowth
  4. Kushairi N, Phan CW, Sabaratnam V, Vidyadaran S, Naidu M, David P
    Int J Med Mushrooms, 2020;22(12):1171-1181.
    PMID: 33463934 DOI: 10.1615/IntJMedMushrooms.2020036938
    Pleurotus eryngii (king oyster mushroom) is a renowned culinary mushroom with various medicinal properties that may be beneficial for health maintenance and disease prevention. However, its effect on the nervous system remains elusive. In this study, hot water (PE-HWA) and ethanol (PE-ETH) extracts of P. eryngii were investigated and compared for their neuroprotective, anti-inflammatory, and neurite outgrowth activities in vitro. Based on the results, both extracts up to 400 μg/mL were nontoxic to PC12 cells and BV2 microglia (p > 0.05). Treatment with 250 μM hydrogen peroxide (H2O2) markedly (p < 0.0001) reduced the PC12 cell viability to 67.74 ± 6.47%. Coincubation with 200 μg/mL and 400 μg/mL of PE-ETH dose-dependently increased the cell viability to 85.34 ± 1.91% (p < 0.001) and 98.37 ± 6.42% (p < 0.0001) respectively, while PE-HWA showed no activity. Nitric oxide (NO) released by BV2 microglia was notably (p < 0.0001) increased by 1 μg/mL lipopolysaccharides (LPS) from 7.46 ± 0.73 μM to 80.00 ± 3.78 μM indicating an inflammatory reaction. However, coincubation with 200 and 400 μg/mL of PE-ETH significantly (p < 0.0001) reduced the NO level to 58.57 ± 6.19 μM and 52.86 ± 3.43 μM respectively, while PE-HWA was noneffective. PE-ETH and PE-HWA at 40 μg/mL significantly increased the neurite-bearing cells from 4.70 ± 3.36% to 13.12 ± 2.82% (p < 0.01) and 20.93 ± 5.37% (p < 0.0001) respectively. Pleurotus eryngii, particularly the ethanol extract (PE-ETH) and its potentially bioactive compounds, could be explored as a neurohealth promoting agent, due to its collective neuroprotective, anti-inflammatory, and neurite outgrowth activities.
    Matched MeSH terms: Neuronal Outgrowth/drug effects
  5. Phan CW, Sabaratnam V, Yong WK, Abd Malek SN
    Nat Prod Res, 2018 May;32(10):1229-1233.
    PMID: 28539058 DOI: 10.1080/14786419.2017.1331226
    Chalcones are a group of compounds widely distributed in plant kingdom. The aim of this study was to assess the neurite outgrowth stimulatory activity of selected chalcones, namely helichrysetin, xanthohumol and flavokawin-C. Using adherent rat pheochromocytoma (PC12 Adh) cells, the chalcones were subjected to neurite outgrowth assay and the extracellular nerve growth factor (NGF) levels were determined. Xanthohumol (10 μg/mL) displayed the highest (p outgrowth. This work supports the potential use of xanthohumol as a potential neuroactive compound to stimulate neurite outgrowth.
    Matched MeSH terms: Neuronal Outgrowth/drug effects
  6. Yang C, Li X, Li Q, Zhang B, Li H, Lin J
    Neuroreport, 2017 Dec 06;28(17):1180-1185.
    PMID: 28953094 DOI: 10.1097/WNR.0000000000000903
    Chicken embryos are used widely in the fields of developmental biology and neurobiology. The chicken embryo also serves as a model to analyze gene expression and function using in ovo electroporation. Plasmids may be injected into the spinal cord or tectum of the chicken central nervous system by microinjection for electroporation. Here, we developed a novel method that combines in ovo electroporation and neuronal culturing to study gene function in the chicken tectum during embryo development. Our method can be used to study in-vivo and in-vitro exogenous genes' function. In addition, live cell imaging microscopy, immunostaining, and transfection can be used with our method to study neuronal growth, development, neurite growth and retraction, and axonal pathfinding. Our result showed that axons were present in isolated neurons after culturing for 24 h, and cell debris was low after replacing the media at 48 h. Many GFP-expressing neurons were observed in the cultured cells after 48 h. We successfully cultured the neurons for 3 weeks. Together, this method combines in ovo electroporation and neuronal culturing advantages and is more convenient for the gene function analysis.
    Matched MeSH terms: Neuronal Outgrowth/physiology
  7. Chong PN, Sangu M, Huat TJ, Reza F, Begum T, Yusoff AAM, et al.
    Malays J Med Sci, 2018 Nov;25(6):28-45.
    PMID: 30914877 MyJurnal DOI: 10.21315/mjms2018.25.6.4
    Background: Following brain injury, development of hippocampal sclerosis often led to the temporal lobe epilepsy which is sometimes resistant to common anti-epileptic drugs. Cellular and molecular changes underlying epileptogenesis in animal models were studied, however, the underlying mechanisms of kainic acid (KA) mediated neuronal damage in rat hippocampal neuron cell culture alone has not been elucidated yet.

    Methods: Embryonic day 18 (E-18) rat hippocampus neurons were cultured with poly-L-lysine coated glass coverslips. Following optimisation, KA (0.5 μM), a chemoconvulsant agent, was administered at three different time-points (30, 60 and 90 min) to induce seizure in rat hippocampal neuronal cell culture. We examined cell viability, neurite outgrowth density and immunoreactivity of the hippocampus neuron culture by measuring brain derived neurotrophic factor (BDNF), γ-amino butyric acid A (GABAA) subunit α-1 (GABRA1), tyrosine receptor kinase B (TrkB), and inositol trisphosphate receptor (IP3R/IP3) levels.

    Results: The results revealed significantly decreased and increased immunoreactivity changes in TrkB (a BDNF receptor) and IP3R, respectively, at 60 min time point.

    Conclusion: The current findings suggest that TrkB and IP3 could have a neuroprotective role which could be a potential pharmacological target for anti-epilepsy drugs.

    Matched MeSH terms: Neuronal Outgrowth
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links