Displaying all 11 publications

Abstract:
Sort:
  1. Yusof A, Kumar S
    Parasitol Res, 2012 May;110(5):1823-8.
    PMID: 22076052 DOI: 10.1007/s00436-011-2705-9
    Trichomonas vaginalis, a flagellated protozoan parasite, is commonly found in the genitourinary tract of humans. Its mode of reproduction has always been reported to be binary fission. The high parasite numbers seen in a relatively short period in in vitro cultures led us to believe that there must be other modes of reproduction. The present study for the first time provides transformational evidence at the ultrastructural level seen in tropohozoites of T. vaginalis undergoing a multiple asexual mode of reproduction. The findings show that the single cell with a nucleus is capable of dividing to as many as eight nuclei within the cytoplasmic body. Before the commencement of division, the nucleus remained round or ovoid in shape with condensed chromatin masses and only a few endoplasmic reticula surrounding the nucleus. During the division, the nucleus started to elongate and become irregular in shape with visible chromatin masses condensing with the accumulation of numerous endoplasmic reticula. Nuclear division gave rise to as many as eight nuclei within a cell, which could be seen to be connected by numerous endoplasmic reticula. In addition, a high number of hydrogenosomes and vacuoles can be seen in multinucleated T. vaginalis compared with single nucleated T. vaginalis. This study confirms that multiple modes of nuclear division do exist in T. vaginalis and are a precursor to progeny formation.
    Matched MeSH terms: Organelles/ultrastructure
  2. Loh SH, Chen MK, Fauzi NS, Aziz A, Cha TS
    Sci Rep, 2021 Feb 01;11(1):2720.
    PMID: 33526809 DOI: 10.1038/s41598-021-81609-6
    Conventional microalgae oil extraction applies physicochemical destruction of dry cell biomass prior to transesterification process to produce fatty acid methyl esters (FAMEs). This report presents a simple and rapid direct transesterification (DT) method for FAMEs production and fatty acid profiling of microalgae using freshly harvested biomass. Results revealed that the FAMEs recovered from Chlorella vulgaris were 50.1 and 68.3 mg with conventional oil-extraction-transesterification (OET) and DT method, respectively. While for Messastrum gracile, the FAMEs recovered, were 49.9 and 76.3 mg, respectively with OET and DT methods. This demonstrated that the DT method increased FAMEs recovery by 36.4% and 53.0% from C. vulgaris and M. gracile, respectively, as compared to OET method. Additionally, the DT method recovered a significantly higher amount of palmitic (C16:0) and stearic (C18:0) acids from both species, which indicated the important role of these fatty acids in the membranes of cells and organelles. The DT method performed very well using a small volume (5 mL) of fresh biomass coupled with a shorter reaction time (~ 15 min), thus making real-time monitoring of FAMEs and fatty acid accumulation in microalgae culture feasible.
    Matched MeSH terms: Organelles
  3. Mohd. Bakri, M., Whittaker, D.A.
    Ann Dent, 2003;10(1):-.
    MyJurnal
    The ultrastructure of the odontoblast reflects the certain phases that the cell undergoes in their lifecycle. Ultrastructure studies of the odontoblasts have often been carried out using young teeth. In this study, teeth from an older individual have been used to study the odontoblasts from the crown and root area. The odontoblasts from the crown area retain their columnar shape while odontoblasts from the root area appeared to be flattened. The organelles present in the odontoblasts either from the crown or root area was observed to be reduced.
    Matched MeSH terms: Organelles
  4. Diez Benavente E, Florez de Sessions P, Moon RW, Holder AA, Blackman MJ, Roper C, et al.
    PLoS Genet, 2017 Sep;13(9):e1007008.
    PMID: 28922357 DOI: 10.1371/journal.pgen.1007008
    The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.
    Matched MeSH terms: Organelles/genetics*; Organelles/parasitology
  5. Gunes S, Sengupta P, Henkel R, Alguraigari A, Sinigaglia MM, Kayal M, et al.
    World J Mens Health, 2020 Jan;38(1):9-23.
    PMID: 30350487 DOI: 10.5534/wjmh.180066
    Microtubules are the prime component of the cytoskeleton along with microfilaments. Being vital for organelle transport and cellular divisions during spermatogenesis and sperm motility process, microtubules ascertain functional capacity of sperm. Also, microtubule based structures such as axoneme and manchette are crucial for sperm head and tail formation. This review (a) presents a concise, yet detailed structural overview of the microtubules, (b) analyses the role of microtubule structures in various male reproductive functions, and (c) presents the association of microtubular dysfunctions with male infertility. Considering the immense importance of microtubule structures in the formation and maintenance of physiological functions of sperm cells, this review serves as a scientific trigger in stimulating further male infertility research in this direction.
    Matched MeSH terms: Organelles
  6. Ridzuan, P.M., Nasir Mohamad, Salwani Ismail, Nor Iza A. Rahman, Sanusi, N.A., Rabiatul Adawiyah Umar, et al.
    MyJurnal
    Trichophyton rubrum is a common pathogenic fungal species that is responsible for causing infection on
    human skin, hair and nail. The antifungal-resistant strains complicate the treatment regime.
    Hydroxychavicol (HC) is one of the main compounds from Piper betel leaf that have antifungal potential and
    its mechanism of action has not been studied yet. The objective of this preliminary study to determine the
    antifungal properties of HC against T. rubrum using transmission electron microscope (TEM) on gross and
    ultrastructure of T. rubrum hypha. T. rubrum was treated with HC and miconazole (MI) at concentrations of
    1.25, 2.5, 5 and 10 mg/mL for 1, 3, 5 and 7 days continuously. Generally, fungi structures became more
    severely damaged at increasing treatment duration. Microscopically, the fungi’s cell wall treated with HC
    showed a rough surface, shrinkage and demolition similar to the MI treated group. The fungi organelles were
    also demolished and disorganized. This study revealed that HC has the ability to inhibit T. rubrum growth
    and has potential to be an antifungal agent for skin infections.
    Matched MeSH terms: Organelles
  7. Ng KK, Motoda Y, Watanabe S, Sofiman Othman A, Kigawa T, Kodama Y, et al.
    PLoS One, 2016;11(4):e0154081.
    PMID: 27100681 DOI: 10.1371/journal.pone.0154081
    In current plant biotechnology, the introduction of exogenous DNA encoding desired traits is the most common approach used to modify plants. However, general plant transformation methods can cause random integration of exogenous DNA into the plant genome. To avoid these events, alternative methods, such as a direct protein delivery system, are needed to modify the plant. Although there have been reports of the delivery of proteins into cultured plant cells, there are currently no methods for the direct delivery of proteins into intact plants, owing to their hierarchical structures. Here, we demonstrate the efficient fusion-peptide-based delivery of proteins into intact Arabidopsis thaliana. Bovine serum albumin (BSA, 66 kDa) was selected as a model protein to optimize conditions for delivery into the cytosol. The general applicability of our method to large protein cargo was also demonstrated by the delivery of alcohol dehydrogenase (ADH, 150 kDa) into the cytosol. The compatibility of the fusion peptide system with the delivery of proteins to specific cellular organelles was also demonstrated using the fluorescent protein Citrine (27 kDa) conjugated to either a nuclear localization signal (NLS) or a peroxisomal targeting signal (PTS). In conclusion, our designed fusion peptide system can deliver proteins with a wide range of molecular weights (27 to 150 kDa) into the cells of intact A. thaliana without interfering with the organelle-targeting peptide conjugated to the protein. We expect that this efficient protein delivery system will be a powerful tool in plant biotechnology.
    Matched MeSH terms: Organelles/metabolism
  8. Sadali NM, Sowden RG, Ling Q, Jarvis RP
    Plant Cell Rep, 2019 Jul;38(7):803-818.
    PMID: 31079194 DOI: 10.1007/s00299-019-02420-2
    Plant cells are characterized by a unique group of interconvertible organelles called plastids, which are descended from prokaryotic endosymbionts. The most studied plastid type is the chloroplast, which carries out the ancestral plastid function of photosynthesis. During the course of evolution, plastid activities were increasingly integrated with cellular metabolism and functions, and plant developmental processes, and this led to the creation of new types of non-photosynthetic plastids. These include the chromoplast, a carotenoid-rich organelle typically found in flowers and fruits. Here, we provide an introduction to non-photosynthetic plastids, and then review the structures and functions of chromoplasts in detail. The role of chromoplast differentiation in fruit ripening in particular is explored, and the factors that govern plastid development are examined, including hormonal regulation, gene expression, and plastid protein import. In the latter process, nucleus-encoded preproteins must pass through two successive protein translocons in the outer and inner envelope membranes of the plastid; these are known as TOC and TIC (translocon at the outer/inner chloroplast envelope), respectively. The discovery of SP1 (suppressor of ppi1 locus1), which encodes a RING-type ubiquitin E3 ligase localized in the plastid outer envelope membrane, revealed that plastid protein import is regulated through the selective targeting of TOC complexes for degradation by the ubiquitin-proteasome system. This suggests the possibility of engineering plastid protein import in novel crop improvement strategies.
    Matched MeSH terms: Organelles/metabolism
  9. Shahida S, Nor Zamzila A, Norlelawati AT, Jamalludin AR, Azliana AF, Zunariah Buyong
    MyJurnal
    Introduction: Over the decades, organic arsenic has been thought to be less toxic than inorganic arsenic.
    Monosodium methylarsonate (MSMA) is a potent organoarsenical herbicide that is still being used in most
    Asian countries. Reported studies on the effects of organic arsenic are mainly to the gastrointestinal system,
    however there are limited research on its impacts to the liver. Therefore, this study aimed to investigate the
    effect of MSMA exposure on hepatocytes and liver sinusoidal endothelial cells (LSEC). Materials and Methods:
    Fourteen Sprague Dawley rats (n=14) were divided equally into arsenic-exposed (n=7) and control (n=7)
    groups. The rats in arsenic-exposed group were given MSMA at 63.20 mg/kg daily for 6 months through oral
    gavage. While the rats in control group were given distilled water ad libitum. At the end of the duration,
    they were euthanized and underwent liver perfusion for tissue preservation. Liver tissues were harvested and
    processed for light microscopy, scanning and transmission electron microscopy. The findings were analysed
    descriptively. Results: MSMA had caused necrotic and apoptotic changes to the liver. Normal organelles
    morphology were loss in the hepatocytes while LSEC revealed defenestration. Conclusion: In this study,
    chronic low dose organic arsenic exposure showed evidence of toxicity to hepatocytes. Interestingly, LSEC
    demonstrated capillarization changes.
    Matched MeSH terms: Organelles
  10. Ridzuan, P.M., Nasir Mohamad, Salwani Ismail, Nor Iza A. Rahman, Hairul Aini H., Zunariah, B., et al.
    MyJurnal
    Hydroxychavicol (HC) is a phenolic compound of betel leaf (Piper betle). It has been reported to have antifungal properties against dermatophytes including T. rubrum. The aim of this study was to identify the effects of the HC against T. rubrum. Broth dilution method was used to determine the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of the HC. Microscopic study of the treated fungus was done by transmission electron microscope (TEM). Cytotoxicity study using pre-adipocyte (3T3-L1) cell line was performed by means of MTT cell proliferation assay. The MIC and MFC results of the HC were both 0.49 µg/ml. Microscopic study revealed the destruction of the fungal cell wall and organelles. Cytotoxicity study showed HC to be non-toxic to the tested human cell line. In conclusion, HC may potentially be used as an alternative therapeutic agent against T. rubrum infections.
    Matched MeSH terms: Organelles
  11. Awang-Junaidi AH, Fayaz MA, Kawamura E, Sobchishin L, MacPhee DJ, Honaramooz A
    Cell Tissue Res, 2020 Aug;381(2):361-377.
    PMID: 32388763 DOI: 10.1007/s00441-020-03218-5
    Gonocytes in the neonatal testis have male germline stem cell potential. The objective of the present study was to examine the behavior and ultrastructure of gonocytes in culture. Neonatal porcine testis cells were cultured for 4 weeks and underwent live-cell imaging to explore real-time interactions among cultured cells. This included imaging every 1 h from day 0 to day 3, every 2 h from day 4 to day 7, and every 1 h for 24 h at days 14, 21, and 28. Samples also underwent scanning electron microscopy, transmission electron microscopy, morphometric evaluations, immunofluorescence, and RT-PCR. Live-cell imaging revealed an active amoeboid-like movement of gonocytes, assisted by the formation of extensive cytoplasmic projections, which, using scanning electron microscopy, were categorized into spike-like filopodia, leaf-like lamellipodia, membrane ruffles, and cytoplasmic blebs. In the first week of culture, gonocytes formed loose attachments on top of a somatic cell monolayer and, in week 2, formed grape-like clusters, which, over time, grew in cell number. Starting at week 3 of culture, some of the gonocyte clusters transformed into large multinucleated embryoid body-like colonies (EBLCs) that expressed both gonocyte- and pluripotent-specific markers. The number and diameter of individual gonocytes, the number and density of organelles within gonocytes, as well as the number and diameter of the EBLCs increased over time (P 
    Matched MeSH terms: Organelles
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links