METHODS: This was a retrospective study aimed to evaluate the perioperative outcome of single-staged PSF in severe rigid idiopathic scoliosis patients (Cobb angle ≥90° and ≤30% flexibility). Forty-one patients with severe rigid idiopathic scoliosis who underwent single-staged PSF were included. The perioperative outcome parameters were operation duration, intraoperative blood loss, intraoperative hemodynamic parameters, preoperative and postoperative hemoglobin, transfusion rate, patient-controlled anesthesia morphine usage, length of postoperative hospital stay, and perioperative complications. Radiological parameters included preoperative and postoperative Cobb angle, correction rate, side-bending flexibility, and side-bending correction index.
RESULTS: The mean age was 16.9 ± 5.6 years. The mean preoperative Cobb angle was 110.8 ± 12.1° with mean flexibility of 23.1 ± 6.3%. The mean operation duration was 215.5 ± 45.2 min with mean blood loss of 1752.6 ± 830.5 mL. The allogeneic blood transfusion rate was 24.4%. The mean postoperative hospital stay was 76.9 ± 26.7 h. The mean postoperative Cobb angle and correction rate were 54.4 ± 12.8° and 50.9 ± 10.1%, respectively. The readmission rate in this cohort was 2.4%. Four perioperative complications were documented (9.8%), one somatosensory evoke potential signal loss, one superficial infection, one lung collapse, and one superior mesenteric artery syndrome.
CONCLUSIONS: Severe rigid idiopathic scoliosis treated with single-staged PSF utilizing a dual attending surgeon strategy demonstrated an average correction rate of 50.9%, operation duration of 215.5 min, and postoperative hospital stay of 76.9 h with a 9.8% perioperative complication rate.
METHODS: Patients treated for Blount disease using external fixator from 2002 to 2016 were recruited for the study. We used Ilizarov and Taylor Spatial Frame (TSF) external fixator to perform simultaneous correction of all the metaphyseal deformities without elevating the tibia plateau. Surgical outcome was evaluated using mechanical axis deviation (MAD), tibial femoral angle (TFA), and femoral condyle tibial shaft angle (FCTSA).
RESULTS: A total of 22 patients with 32 tibias have been recruited for the study. The mean MAD improved from 95 ± 51.4 mm to 9.0 ± 37.7 mm (medial to midpoint of the knee), mean TFA improved from 31 ± 15° varus to 2 ± 14° valgus, and mean FCTSA improved from 53 ± 14° to 86 ± 14°. Mean duration of frame application is 9.4 months. Two patients developed pathological fractures over the distracted bones, one developed delayed consolidation and other developed overcorrection.
CONCLUSIONS: Correction of Blount disease can be achieved by gradual correction using Ilizarov or TSF external fixator with low risk of soft tissue complication. Longer duration of frame application should be considered to reduce the risk of pathological fracture or subsequent deformation of the corrected bone.
METHODS: From April 2014 to December 2015, a total of 72 knees in 64 patients that underwent OWHTO, second-look arthroscopy, and magnetic resonance imaging (MRI) assessment, were enrolled. Preoperative and postoperative coronal and sagittal translation, joint line orientation angle, the distance between medial femoral notch marginal line and medial tibial spine, and PTS were evaluated. ACL status was arthroscopically graded from grade 1 (best) to 4 (worst). The MRI signal of the graft in three portions (proximal, middle, and distal) was graded from grade 1 (best) to 4 (worst).
RESULTS: High grade (3: partial, and 4: complete rupture) was noted in 28 cases (38.9%) at the second-look arthroscopy compared with 10 cases (13.9%) at index arthroscopy. The MRI signal grade significantly increased at follow up MRI compared with preoperative MRI (P<0.01). An increased signal was commonly noted in the middle and distal portions of the graft.
CONCLUSIONS: Geometric changes after OWHTO were related to ACL deterioration. The ACL was commonly affected at the middle and distal portions and rarely at the proximal portion. There is a possibility of impingement because of the geometric changes.
LEVEL OF EVIDENCE: Level IV.