Displaying all 10 publications

Abstract:
Sort:
  1. Marina Mohd Bakri
    MyJurnal
    Over the past decade, research involving immunometabolism, has been gaining much interest. The immune cell re-sponses of an individual may be influenced by metabolites released by the host or derived from the microbiota. How-ever, the immune response of an individual may vary depending on the health condition of an individual. During infection, the metabolic processes derived from the infectious diseases can effect the function of immune cells and thus determine the response or survival of the host during infection. Immunometabolism also has a role in tumor development although the mechanism of how tumor cells influence immune cell function is not well understood. Among the major meatbolic pathways that have been studied in immune cells include glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, fatty acid oxidation, fatty acid synthesis and amino acid metabolism. Understanding the tight connection between metabolomics and immunity in health and disease will be crucial as this could lead to therapeutic interventions or in developing metabolomic biomarkers in immunology.
    Matched MeSH terms: Pentose Phosphate Pathway
  2. Choi SB, Lew LC, Hor KC, Liong MT
    Appl Biochem Biotechnol, 2014 May;173(1):129-42.
    PMID: 24648139 DOI: 10.1007/s12010-014-0822-5
    This study aimed at optimizing the production of hyaluronic acid by Lactobacillus acidophilus FTDC 1231 using response surface methodology and evaluating the effects of divalent metal ions along the production pathway using molecular docking. Among different divalent metal ions that were screened, only iron (II) sulphate and copper (II) sulphate significantly (P 
    Matched MeSH terms: Pentose Phosphate Pathway*
  3. Wu S, Gu W, Huang A, Li Y, Kumar M, Lim PE, et al.
    Microb Cell Fact, 2019 Sep 23;18(1):161.
    PMID: 31547820 DOI: 10.1186/s12934-019-1214-x
    BACKGROUND: Numerous studies have shown that stress induction and genetic engineering can effectively increase lipid accumulation, but lead to a decrease of growth in the majority of microalgae. We previously found that elevated CO2 concentration increased lipid productivity as well as growth in Phaeodactylum tricornutum, along with an enhancement of the oxidative pentose phosphate pathway (OPPP) activity. The purpose of this work directed toward the verification of the critical role of glucose-6-phosphate dehydrogenase (G6PDH), the rate-limiting enzyme in the OPPP, in lipid accumulation in P. tricornutum and its simultaneous rapid growth rate under high-CO2 (0.15%) cultivation.

    RESULTS: In this study, G6PDH was identified as a target for algal strain improvement, wherein G6PDH gene was successfully overexpressed and antisense knockdown in P. tricornutum, and systematic comparisons of the photosynthesis performance, algal growth, lipid content, fatty acid profiles, NADPH production, G6PDH activity and transcriptional abundance were performed. The results showed that, due to the enhanced G6PDH activity, transcriptional abundance and NAPDH production, overexpression of G6PDH accompanied by high-CO2 cultivation resulted in a much higher of both lipid content and growth in P. tricornutum, while knockdown of G6PDH greatly decreased algal growth as well as lipid accumulation. In addition, the total proportions of saturated and unsaturated fatty acid, especially the polyunsaturated fatty acid eicosapentaenoic acid (EPA; C20:5, n-3), were highly increased in high-CO2 cultivated G6PDH overexpressed strains.

    CONCLUSIONS: The successful of overexpression and antisense knockdown of G6PDH well demonstrated the positive influence of G6PDH on algal growth and lipid accumulation in P. tricornutum. The improvement of algal growth, lipid content as well as polyunsaturated fatty acids in high-CO2 cultivated G6PDH overexpressed P. tricornutum suggested this G6PDH overexpression-high CO2 cultivation pattern provides an efficient and economical route for algal strain improvement to develop algal-based biodiesel production.

    Matched MeSH terms: Pentose Phosphate Pathway
  4. Kamarudin AN, Lai KS, Lamasudin DU, Idris AS, Balia Yusof ZN
    Front Plant Sci, 2017;8:1799.
    PMID: 29089959 DOI: 10.3389/fpls.2017.01799
    Thiamine, or vitamin B1 plays an indispensable role as a cofactor in crucial metabolic reactions including glycolysis, pentose phosphate pathway and the tricarboxylic acid cycle in all living organisms. Thiamine has been shown to play a role in plant adaptation toward biotic and abiotic stresses. The modulation of thiamine biosynthetic genes in oil palm seedlings was evaluated in response to root colonization by endophytic Hendersonia toruloidea. Seven-month-old oil palm seedlings were inoculated with H. toruloidea and microscopic analyses were performed to visualize the localization of endophytic H. toruloidea in oil palm roots. Transmission electron microscopy confirmed that H. toruloidea colonized cortical cells. The expression of thiamine biosynthetic genes and accumulation of total thiamine in oil palm seedlings were also evaluated. Quantitative real-time PCR was performed to measure transcript abundances of four key thiamine biosynthesis genes (THI4, THIC, TH1, and TPK) on days 1, 7, 15, and 30 in response to H. toruloidea colonization. The results showed an increase of up to 12-fold in the expression of all gene transcripts on day 1 post-inoculation. On days 7, 15, and 30 post-inoculation, the relative expression levels of these genes were shown to be downregulated. Thiamine accumulation was observed on day 7 post-colonization and subsequently decreased until day 30. This work provides the first evidence for the enhancement of thiamine biosynthesis by endophytic colonization in oil palm seedlings.
    Matched MeSH terms: Pentose Phosphate Pathway
  5. Balasubramaniam S, Wamelink MM, Ngu LH, Talib A, Salomons GS, Jakobs C, et al.
    J Pediatr Gastroenterol Nutr, 2011 Jan;52(1):113-6.
    PMID: 21119539 DOI: 10.1097/MPG.0b013e3181f50388
    Matched MeSH terms: Pentose Phosphate Pathway/genetics
  6. Mienda BS, Shamsir MS, Illias RM
    Comput Biol Chem, 2016 Apr;61:130-7.
    PMID: 26878126 DOI: 10.1016/j.compbiolchem.2016.01.013
    The metabolic role of 6-phosphogluconate dehydrogenase (gnd) under anaerobic conditions with respect to succinate production in Escherichia coli remained largely unspecified. Herein we report what are to our knowledge the first metabolic gene knockout of gnd to have increased succinic acid production using both glucose and glycerol substrates in E. coli. Guided by a genome scale metabolic model, we engineered the E. coli host metabolism to enhance anaerobic production of succinic acid by deleting the gnd gene, considering its location in the boundary of oxidative and non-oxidative pentose phosphate pathway. This strategy induced either the activation of malic enzyme, causing up-regulation of phosphoenolpyruvate carboxylase (ppc) and down regulation of phosphoenolpyruvate carboxykinase (ppck) and/or prevents the decarboxylation of 6 phosphogluconate to increase the pool of glyceraldehyde-3-phosphate (GAP) that is required for the formation of phosphoenolpyruvate (PEP). This approach produced a mutant strain BMS2 with succinic acid production titers of 0.35gl(-1) and 1.40gl(-1) from glucose and glycerol substrates respectively. This work further clearly elucidates and informs other studies that the gnd gene, is a novel deletion target for increasing succinate production in E. coli under anaerobic condition using glucose and glycerol carbon sources. The knowledge gained in this study would help in E. coli and other microbial strains development for increasing succinate production and/or other industrial chemicals.
    Matched MeSH terms: Pentose Phosphate Pathway
  7. Ishak SD, Razali SA, Kamarudin MS, Abol-Munafi AB
    Data Brief, 2020 Aug;31:105916.
    PMID: 32642522 DOI: 10.1016/j.dib.2020.105916
    The enzyme glucose-6-phosphate dehydrogenase (G6PD) catalyses the metabolite glucose-6-phosphate in producing NADPH during the first phase of pentose-phosphate pathway thus provides reducing power to all cells for cellular growth, antioxidant defence, and biosynthetic reactions in all living organism. The deliberate inclusion of starch as carbohydrate source in commercial feed however may affect the G6PD hepatic activity in cultured fish. We designed a set of primers to target G6PD gene in the popular Malaysian aquaculture species, Tor tambroides. For this dataset, the molecular characteristics of obtained T. tambroides G6PD (TtG6PD) nucleotide sequence was analysed using multiple alignments and phylogenetic analyses of the deduced amino acids. The set of primers obtained were then used in a study to evaluate the effect of different dietary carbohydrate inclusion levels on the hepatic TtG6PD mRNA expression of the T. tambroides fingerlings. Four groups of fish were given a dietary treatment of 15%, 20%, 25% and 30% starch at the optimal inclusion level of 23.4% for 10 weeks. The TtG6PD mRNA transcripts were measured using real-time-PCR assays and its expression normalized against β-actin, which acts as the internal control gene. This article provides supportive data in relation between hepatic TtG6PD mRNA gene expression in T. tambroides and how it is influenced by its dietary carbohydrate intake. These data will also assist in further nutritional genomic studies of carbohydrate and energy utilization for all species in the mahseer family.
    Matched MeSH terms: Pentose Phosphate Pathway
  8. Williams M, Valayannopoulos V, Altassan R, Chung WK, Heijboer AC, Keng WT, et al.
    J Inherit Metab Dis, 2018 May 02.
    PMID: 29721915 DOI: 10.1007/s10545-018-0184-1
    BACKGROUND: Transaldolase deficiency (TALDO-D) is a rare autosomal recessive inborn error of the pentose phosphate pathway. Since its first description in 2001, several case reports have been published, but there has been no comprehensive overview of phenotype, genotype, and phenotype-genotype correlation.

    METHODS: We performed a retrospective questionnaire and literature study of clinical, biochemical, and molecular data of 34 patients from 25 families with proven TALDO-D. In some patients, endocrine abnormalities have been found. To further evaluate these abnormalities, we performed biochemical investigations on blood of 14 patients.

    RESULTS AND CONCLUSIONS: Most patients (n = 22) had an early-onset presentation (prenatally or before 1 month of age); 12 patients had a late-onset presentation (3 months to 9 years). Main presenting symptoms were intrauterine growth restriction, dysmorphic facial features, congenital heart disease, anemia, thrombocytopenia, and hepato(spleno)megaly. An older sib of two affected patients was asymptomatic until the age of 9 years, and only after molecular diagnosis was hepatomegaly noted. In some patients, there was gonadal dysfunction with low levels of testosterone and secondary luteinizing hormone (LH) and follicle-stimulating hormone (FSH) abnormalities later in life. This overview provides information that can be helpful for managing patients and counseling families regarding prognosis. Diagnostic guidelines, possible genotype-phenotype correlations, treatment options, and pathophysiological disease mechanisms are proposed.

    Matched MeSH terms: Pentose Phosphate Pathway
  9. Atangwho IJ, Yin KB, Umar MI, Ahmad M, Asmawi MZ
    PMID: 25358757 DOI: 10.1186/1472-6882-14-426
    This study evaluated the impact of Vernonia amygdalina (VA) on the transcription of key enzymes involved in cellular modulation of glucose in streptozotocin-induced diabetic rats in a bid to understand the possible anti-diabetic mechanism of VA.
    Matched MeSH terms: Pentose Phosphate Pathway/drug effects*
  10. Hasunuma T, Ismail KSK, Nambu Y, Kondo A
    J Biosci Bioeng, 2014 Feb;117(2):165-169.
    PMID: 23916856 DOI: 10.1016/j.jbiosc.2013.07.007
    Lignocellulosic biomass dedicated to bioethanol production usually contains pentoses and inhibitory compounds such as furfural that are not well tolerated by Saccharomyces cerevisiae. Thus, S. cerevisiae strains with the capability of utilizing both glucose and xylose in the presence of inhibitors such as furfural are very important in industrial ethanol production. Under the synergistic conditions of transaldolase (TAL) and alcohol dehydrogenase (ADH) overexpression, S. cerevisiae MT8-1X/TAL-ADH was able to produce 1.3-fold and 2.3-fold more ethanol in the presence of 70 mM furfural than a TAL-expressing strain and a control strain, respectively. We also tested the strains' ability by mimicking industrial ethanol production from hemicellulosic hydrolysate containing fermentation inhibitors, and ethanol production was further improved by 16% when using MT8-1X/TAL-ADH compared to the control strain. Transcript analysis further revealed that besides the pentose phosphate pathway genes TKL1 and TAL1, ADH7 was also upregulated in response to furfural stress, which resulted in higher ethanol production compared to the TAL-expressing strain. The improved capability of our modified strain was based on its capacity to more quickly reduce furfural in situ resulting in higher ethanol production. The co-expression of TAL/ADH genes is one crucial strategy to fully utilize undetoxified lignocellulosic hydrolysate, leading to cost-competitive ethanol production.
    Matched MeSH terms: Pentose Phosphate Pathway/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links