Displaying all 12 publications

Abstract:
Sort:
  1. Lim PK, Tan SK, Khoo AS, Noor Rain A, Nagappan S, Mak JW
    PMID: 9740263
    Matched MeSH terms: Plasmodium falciparum/enzymology
  2. Ang HH, Chan KL, Mak JW
    Folia Parasitol., 1997;44(2):128-30.
    PMID: 9269721
    Six clones were obtained from each Plasmodium falciparum (Welch, 1897) isolate from different geographical areas, Gombak A (Malaysian), Gombak C (Malaysian), ST 9 (Malaysian, ST 12 (Malaysian), ST 85 (Malaysian, ST 148 (Malaysian), Gambian (African) and TGR (Thailand) isolates using the limiting dilution method (Rosario 1981). Forty-eight clones were obtained and were characterized by an electrophoresis isoenzyme analysis of PEPE (Peptidase E) (EC. 3.4.11 or 13). Results showed that they were pure clones as they were monovariant with regards to this enzyme unlike their parent isolates which were divariant.
    Matched MeSH terms: Plasmodium falciparum/enzymology*
  3. Normaznah Y, Furuta T, Saniah K, Noor Rain A, Kojima S, Mak JW
    PMID: 9444035
    Matched MeSH terms: Plasmodium falciparum/enzymology
  4. Lau TY, Sylvi M, William T
    Malar J, 2013;12:445.
    PMID: 24321120 DOI: 10.1186/1475-2875-12-445
    The sulphadoxine/pyrimethamine (SDX/PYR) combination had been chosen to treat uncomplicated falciparum malaria in Malaysia for more than 30 years. Non-silent mutations in dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes are responsible for the resistance to pyrimethamine and sulphadoxine, respectively. This study reports the mutational analysis of pfdhfr and pfdhps in single Plasmodium falciparum infection isolates from the interior division of Sabah, Malaysian Borneo.
    Matched MeSH terms: Plasmodium falciparum/enzymology*
  5. Sim TS, Loke P, Lee MA, Singh M, Flotow H
    Parasitol Res, 2001 Sep;87(9):683-6.
    PMID: 11570549
    In this study, the genome of the Plasmodium falciparum Gombak A strain was examined for the presence of a gene encoding falcipain-2, a cysteine protease, using homology-based polymerase chain reaction cloning. The nucleotide sequence obtained from the gene cloned (designated pFG1) is approximately 99% homologous to other falcipain-2 genes from different strains. Comparatively, it is 69% homologous to falcipain-3 genes. Direct cloning of the falcipain-2 gene and its resemblance to the reported corresponding mRNA transcript suggests the absence of introns in this gene. Sequence alignment and comparison revealed four amino acid differences at positions 15, 51, 59 and 414 in the falcipain-2 from P. falciparum Gombak A as compared to other falcipain-2 proteins from different strains.
    Matched MeSH terms: Plasmodium falciparum/enzymology*
  6. Ang HH, Chan KL, Mak JW
    Korean J Parasitol, 1996 Sep;34(3):211-3.
    PMID: 8843698
    Malaysian, African and Thai Plasmodium falciparum isolates were cultured in vitro by the Trager and Jensen method (1976; 1977) and were later cloned by the limiting dilution method (Rosario, 1981). Forty-eight clones were obtained and were characterized by electrophoretic variations of GDH (NADP-dependent glutamate dehydrogenase)(EC. 1.4.1.4). It was found that they were pure clones because they possessed either GDH-1 or GDH-2 unlike their parent isolates which exhibited both GDH-1 and GDH-2.
    Matched MeSH terms: Plasmodium falciparum/enzymology*
  7. Al-Qattan MN, Mordi MN, Mansor SM
    Comput Biol Chem, 2016 10;64:237-249.
    PMID: 27475235 DOI: 10.1016/j.compbiolchem.2016.07.007
    BACKGROUND: Glutathione-s-transferases (GSTs) are enzymes that principally catalyze the conjugation of electrophilic compounds to the endogenous nucleophilic glutathione substrate, besides, they have other non-catalytic functions. The Plasmodium falciparum genome encodes a single isoform of GST (PfGST) which is involved in buffering the toxic heme, thus considered a potential anti-malarial target. In mammals several classes of GSTs are available, each of various isoforms. The human (human GST Pi-1 or hGSTP1) and mouse (murine GST Mu-1 or mGSTM1) GST isoforms control cellular apoptosis by interaction with signaling proteins, thus considered as potential anti-cancer targets. In the course of GSTs inhibitors development, the models of ligands interactions with GSTs are used to guide rational molecular modification. In the absence of X-ray crystallographic data, enzyme kinetics and molecular docking experiments can aid in addressing ligands binding modes to the enzymes.

    METHODS: Kinetic studies were used to investigate the interactions between the three GSTs and each of glutathione, 1-chloro-2,4-dinitrobenzene, cibacron blue, ethacrynic acid, S-hexyl glutathione, hemin and protoporphyrin IX. Since hemin displacement is intended for PfGST inhibitors, the interactions between hemin and other ligands at PfGST binding sites were studied kinetically. Computationally determined binding modes and energies were interlinked with the kinetic results to resolve enzymes-ligands interaction models at atomic level.

    RESULTS: The results showed that hemin and cibacron blue have different binding modes in the three GSTs. Hemin has two binding sites (A and B) with two binding modes at site-A depending on presence of GSH. None of the ligands were able to compete hemin binding to PfGST except ethacrynic acid. Besides bind differently in GSTs, the isolated anthraquinone moiety of cibacron blue is not maintaining sufficient interactions with GSTs to be used as a lead. Similarly, the ethacrynic acid uses water bridges to mediate interactions with GSTs and at least the conjugated form of EA is the true hemin inhibitor, thus EA may not be a suitable lead.

    CONCLUSIONS: Glutathione analogues with bulky substitution at thiol of cysteine moiety or at γ-amino group of γ-glutamine moiety may be the most suitable to provide GST inhibitors with hemin competition.

    Matched MeSH terms: Plasmodium falciparum/enzymology*
  8. Suwito H, Jumina, Mustofa, Pudjiastuti P, Fanani MZ, Kimata-Ariga Y, et al.
    Molecules, 2014 Dec 19;19(12):21473-88.
    PMID: 25532844 DOI: 10.3390/molecules191221473
    Some chalcones have been designed and synthesized using Claisen-Schmidt reactions as inhibitors of the ferredoxin and ferredoxin-NADP+ reductase interaction to pursue a new selective antimalaria agent. The synthesized compounds exhibited inhibition interactions between PfFd-PfFNR in the range of 10.94%-50%. The three strongest inhibition activities were shown by (E)-1-(4-aminophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (50%), (E)-1-(4-aminophenyl)-3-(2,4-dimethoxyphenyl)prop-2-en-1-one (38.16%), and (E)-1-(4-aminophenyl)-3-(2,3-dimethoxyphenyl)prop-2-en-1-one (31.58%). From the docking experiments we established that the amino group of the methoxyamino chlacone derivatives plays an important role in the inhibition activity by electrostatic interaction through salt bridges and that it forms more stable and better affinity complexes with FNR than with Fd.
    Matched MeSH terms: Plasmodium falciparum/enzymology
  9. Abdullah NR, Norahmad NA, Jelip J, Sulaiman LH, Mohd Sidek H, Ismail Z, et al.
    Malar J, 2013;12:198.
    PMID: 23758930 DOI: 10.1186/1475-2875-12-198
    Sulphadoxine-pyrimethamine (SP) has been in use for the treatment of uncomplicated falciparum malaria in Malaysia since the 1970s and is still widely employed in spite of widespread clinical resistance. Resistance to SP is known to be mediated by mutations in the pfdhfr and pfdhps genes. The aim of the present study was to investigate the distribution of pfdhfr and pfdhps gene polymorphism in Plasmodium falciparum field isolates from Kalabakan, Sabah, in northern Borneo.
    Matched MeSH terms: Plasmodium falciparum/enzymology
  10. Lim PK, Looareesuwan S, Chindanond D, Saleh AM, Tan SK
    PMID: 10437950
    Matched MeSH terms: Plasmodium falciparum/enzymology
  11. Dahalan FA, Sidek HM, Murtey MD, Embi MN, Ibrahim J, Fei Tieng L, et al.
    Biomed Res Int, 2016;2016:1645097.
    PMID: 27525262 DOI: 10.1155/2016/1645097
    Plasmodium falciparum mitogen-activated protein (MAP) kinases, a family of enzymes central to signal transduction processes including inflammatory responses, are a promising target for antimalarial drug development. Our study shows for the first time that the P. falciparum specific MAP kinase 2 (PfMAP2) is colocalized in the nucleus of all of the asexual erythrocytic stages of P. falciparum and is particularly elevated in its phosphorylated form. It was also discovered that PfMAP2 is expressed in its highest quantity during the early trophozoite (ring form) stage and significantly reduced in the mature trophozoite and schizont stages. Although the phosphorylated form of the kinase is always more prevalent, its ratio relative to the nonphosphorylated form remained constant irrespective of the parasites' developmental stage. We have also shown that the TSH motif specifically renders PfMAP2 genetically divergent from the other plasmodial MAP kinase activation sites using Neighbour Joining analysis. Furthermore, TSH motif-specific designed antibody is crucial in determining the location of the expression of the PfMAP2 protein. However, by using immunoelectron microscopy, PPfMAP2 were detected ubiquitously in the parasitized erythrocytes. In summary, PfMAP2 may play a far more important role than previously thought and is a worthy candidate for research as an antimalarial.
    Matched MeSH terms: Plasmodium falciparum/enzymology*
  12. Mphahlele MJ, Mmonwa MM, Choong YS
    Molecules, 2017 Jul 02;22(7).
    PMID: 28671598 DOI: 10.3390/molecules22071099
    A series of novel N-((2,5-diaryl-3-trifluoroacetyl)-1H-indol-7-yl)acetamides has been prepared via a successive and one-pot reaction sequence involving initial trifluoroacetic acid-mediated Beckmann rearrangement of the oximes derived from the 1-(2,5-diaryl-1H-indol-7-yl)ethanones, followed by trifluoroacetylation of the incipient N-(2,5-diaryl-1H-indol-7-yl)-acetamides with trifluoroacetic anhydride. The prepared compounds were evaluated for potential in vitro antiplasmodial properties. Preliminary results from antiplasmodial activity against the chloroquine-sensitive 3D7 strain of Plasmodium falciparum revealed that a combination of 2-(4-flurophenyl)- and 5-(4-fluorophenyl) or 2-(4-flurophenyl)- and 4-fluorostyryl groups in compounds 3(a,f) and 4(a,g), for example, is required for biological activity for both series of compounds. Their possible mode of action against the plasmodial parasite is explained theoretically through molecular docking of the most active compounds against the parasite lactate dehydrogenase (pLDH). These compounds were docked at the entrance of NAD+ in pLDH presumably hindering entry of lactate to cause the observed inhibition effect of pLDH. The four compounds were found to exhibit low toxicity against monkey kidney Vero cells at the highest concentrations tested.
    Matched MeSH terms: Plasmodium falciparum/enzymology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links