Displaying all 4 publications

Abstract:
Sort:
  1. Huang NM, Lim HN, Chia CH, Yarmo MA, Muhamad MR
    Int J Nanomedicine, 2011;6:3443-8.
    PMID: 22267928 DOI: 10.2147/IJN.S26812
    Graphene has attracted much attention from researchers due to its interesting mechanical, electrochemical, and electronic properties. It has many potential applications such as polymer filler, sensor, energy conversion, and energy storage devices. Graphene-based nanocomposites are under an intense spotlight amongst researchers. A large amount of graphene is required for preparation of such samples. Lately, graphene-based materials have been the target for fundamental life science investigations. Despite graphene being a much sought-after raw material, the drawbacks in the preparation of graphene are that it is a challenge amongst researchers to produce this material in a scalable quantity and that there is a concern about its safety. Thus, a simple and efficient method for the preparation of graphene oxide (GO) is greatly desired to address these problems. In this work, one-pot chemical oxidation of graphite was carried out at room temperature for the preparation of large-area GO with ~100% conversion. This high-conversion preparation of large-area GO was achieved using a simplified Hummer's method from large graphite flakes (an average flake size of 500 μm). It was found that a high degree of oxidation of graphite could be realized by stirring graphite in a mixture of acids and potassium permanganate, resulting in GO with large lateral dimension and area, which could reach up to 120 μm and ~8000 μm(2), respectively. The simplified Hummer's method provides a facile approach for the preparation of large-area GO.
    Matched MeSH terms: Potassium Permanganate/chemistry
  2. Wong CPP, Lai CW, Lee KM, Hamid SBA
    Materials (Basel), 2015 Oct 19;8(10):7118-7128.
    PMID: 28793623 DOI: 10.3390/ma8105363
    Textile industries consume large volumes of water for dye processing, leading to undesirable toxic dyes in water bodies. Dyestuffs are harmful to human health and aquatic life, and such illnesses as cholera, dysentery, hepatitis A, and hinder the photosynthetic activity of aquatic plants. To overcome this environmental problem, the advanced oxidation process is a promising technique to mineralize a wide range of dyes in water systems. In this work, reduced graphene oxide (rGO) was prepared via an advanced chemical reduction route, and its photocatalytic activity was tested by photodegrading Reactive Black 5 (RB5) dye in aqueous solution. rGO was synthesized by dispersing the graphite oxide into the water to form a graphene oxide (GO) solution followed by the addition of hydrazine. Graphite oxide was prepared using a modified Hummers' method by using potassium permanganate and concentrated sulphuric acid. The resulted rGO nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV-Vis), X-ray powder diffraction (XRD), Raman, and Scanning Electron Microscopy (SEM) to further investigate their chemical properties. A characteristic peak of rGO-48 h (275 cm-1) was observed in the UV spectrum. Further, the appearance of a broad peak (002), centred at 2θ = 24.1°, in XRD showing that graphene oxide was reduced to rGO. Based on our results, it was found that the resulted rGO-48 h nanoparticles achieved 49% photodecolorization of RB5 under UV irradiation at pH 3 in 60 min. This was attributed to the high and efficient electron transport behaviors of rGO between aromatic regions of rGO and RB5 molecules.
    Matched MeSH terms: Potassium Permanganate
  3. Looi LM, Sumithran E
    Hum Pathol, 1988 Jun;19(6):732-5.
    PMID: 2454214
    Biopsy and necropsy tissue from 31 unselected patients with systemic amyloidosis, in which there was histologic evidence of liver involvement, were reviewed with reference to the location and pattern of amyloid deposition in the liver. Amyloidosis was classified into AA and AL types on the basis of immunohistochemistry and permanganate reaction of the amyloid deposits. Nineteen were categorized as AA (secondary) and 12 as AL (primary) amyloidosis. Deposition of AA amyloid was limited to the walls of vessels in the portal tract, constituting a "vascular" pattern. In AL amyloidosis, the deposits exhibited a "sinusoidal" pattern in that they were seen along hepatic sinusoids as well as in vessel walls. This difference was statistically significant (P less than .001). The histologic pattern of liver infiltration offers a valuable clue in the classification of systemic amyloidosis and provides information that may be useful in the selection of patients for therapy.
    Matched MeSH terms: Potassium Permanganate
  4. Looi LM
    Histopathology, 1991 Feb;18(2):133-41.
    PMID: 1901294
    Congo red screening of 27,052 routine biopsy specimens from 22,827 patients over a 5 1/2-year period in the Department of Pathology, University of Malaya detected 186 cases of amyloidosis. The categories of amyloidosis encountered and their prevalences in relation to each other were: systemic AL (5.9%); systemic AA (3.2%); isolated atrial (14%); primary localized cutaneous (7.5%); other primary localized deposits (3.2%); localized intratumour (58%); and dystrophic (8.6%). A third of patients with systemic AL amyloidosis had coexistent immunocyte abnormality. The commonest underlying pathology for systemic AA amyloidosis was leprosy. Notable among the types of localized amyloidosis revealed by this study were isolated atrial amyloidosis, which appeared to complicate chronic rheumatic heart disease, and intratumour amyloidosis complicating nasopharyngeal carcinoma. Other tumours in which amyloid deposits were observed included basal cell carcinoma, islet cell tumour and medullary carcinoma of the thyroid. Dystrophic amyloidosis was observed in fibrotic tissues, such as damaged cardiac valves and osteoarthritic joints. Heredofamilial amyloidosis, senile systemic amyloidosis and degenerative cerebral amyloidosis were notably absent from this study.
    Matched MeSH terms: Potassium Permanganate
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links