METHODS: We searched PubMed, Embase, and Web of Science through August 2024 for randomized controlled trials evaluating ensifentrine in COPD patients over a minimum of four weeks. Data extraction and screening utilized Knowledge software, and meta-analyses were performed using R v4.4 with a random-effects model.
RESULTS: From 206 studies identified, four met our inclusion criteria. Ensifentrine improved FEV1 significantly at a dose of 3 mg (LS mean difference: 40.90 mL; 95 % CI: 19.65-62.15). It also improved dyspnea as measured by the Transition Dyspnea Index (TDI) (LS mean difference: 0.91; 95 % CI: 0.61-1.21) and quality of life according to the St. George's Respiratory Questionnaire-C (SGRQ-C) scores (LS mean difference: -1.92; 95 % CI: -3.28 to -0.55). Safety profiles were comparable between the ensifentrine and placebo groups, with no significant increase in treatment-emergent adverse events (TEAEs) (RR: 1.02; 95 % CI: 0.94-1.10).
CONCLUSION: Ensifentrine significantly enhances lung function, reduces dyspnea, and improves quality of life in COPD patients, especially at a 3 mg dose. These benefits, coupled with a stable safety profile, support its use as an adjunctive therapy in COPD management.
OBJECTIVES: This study was performed to identify mechanisms of afatinib resistance and to explore potential afatinib-based combination treatments with other targeted inhibitors in oral squamous cell carcinoma.
METHODS: We determined the anti-proliferative effects of afatinib on a panel of oral squamous cell carcinoma cell lines using a crystal violet-growth inhibition assay, click-iT 5-ethynyl-2'-deoxyuridine staining, and cell-cycle analysis. Biochemical assays were performed to study the underlying mechanism of drug treatment as a single agent or in combination with the MEK inhibitor trametinib. We further evaluated and compared the anti-tumor effects of single agent and combined treatment by using oral squamous cell carcinoma xenograft models.
RESULTS: In this study, we showed that afatinib inhibited oral squamous cell carcinoma cell proliferation via cell-cycle arrest at the G0/G1 phase, and inhibited tumor growth in xenograft mouse models. Interestingly, we demonstrated reactivation of the mitogen-activated protein kinase (ERK1/2) pathway in vitro, which possibly reduced the effects of ErbB inhibition. Concomitant treatment of oral squamous cell carcinoma cells with afatinib and trametinib synergized the anti-tumor effects in oral squamous cell carcinoma-bearing mouse models.
CONCLUSIONS: Our findings provide insight into the molecular mechanism of resistance to afatinib and support further clinical evaluation into the combination of afatinib and MEK inhibition in the treatment of oral squamous cell carcinoma.