Displaying all 5 publications

Abstract:
Sort:
  1. Lai MY, Ooi CH, Lau YL
    Am J Trop Med Hyg, 2018 03;98(3):700-703.
    PMID: 29260656 DOI: 10.4269/ajtmh.17-0738
    The aim of this study was to develop a recombinase polymerase amplification (RPA) combined with a lateral flow (LF) strip method for specific diagnosis of Plasmodium knowlesi. With incubation at 37°C, the 18S rRNA gene of P. knowlesi was successfully amplified within 12 minutes. By adding a specifically designed probe to the reaction solution, the amplified RPA product can be visualized on a LF strip. The RPA assay exhibited high sensitivity with limits of detection down to 10 parasites/μL of P. knowlesi. Nonetheless, it was demonstrated that all P. knowlesi (N = 41) and other Plasmodium sp. (N = 25) were positive while negative samples (N = 8) were negative. Therefore, a combination of RPA and LF strip detection is a highly promising approach with the potential to be suitable for use in resource-limited settings.
    Matched MeSH terms: Recombinases/genetics*
  2. Louizi C, Khan MAA, Faisal K, Chowdhury R, Ghosh P, Hossain F, et al.
    Diagn Microbiol Infect Dis, 2023 Feb;105(2):115862.
    PMID: 36493571 DOI: 10.1016/j.diagmicrobio.2022.115862
    The spread of vector habitats along with increasing human mobility can introduce atypical Leishmania species and hence can challenge existing diagnostic practices for rapid detection of active infection with species outside the narrow target range. Here we assessed the pan-Leishmania detection ability of isothermal recombinase polymerase amplification (RPA) assays targeting 18S rRNA gene, cathepsin L-like cysteine proteinase B (Cpb) gene, and kinetoplast minicircle DNA (kDNA) regions. While the lowest limit of detection of the 18S rRNA-RPA and Cpb-RPA assays were estimated as 12 and 17 standard DNA molecules, respectively, both assays could amplify genomic DNA of 7 pathogenic Leishmania species. Evaluation of 18S rRNA-RPA and our previously developed kDNA-RPA assays on 70 real-time PCR-positive leishmaniasis samples of varying pathologies resulted in sensitivity rates of 35.71% and 88.57%, respectively, while the combined sensitivity was 98.57%. Combinatorial application of 18S rRNA-RPA and kDNA-RPA assays can be recommended for further diagnostic assessments.
    Matched MeSH terms: Recombinases/genetics
  3. Lau YL, Ismail IB, Mustapa NIB, Lai MY, Tuan Soh TS, Haji Hassan A, et al.
    PLoS One, 2021;16(1):e0245164.
    PMID: 33406112 DOI: 10.1371/journal.pone.0245164
    Rapid diagnosis is an important intervention in managing the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak. Real time reverse transcription polymerase chain reaction (RT-qPCR) remains the primary means for diagnosing the new virus strain but it is time consuming and costly. Recombinase polymerase amplification (RPA) is an isothermal amplification assay that does not require a PCR machine. It is an affordable, rapid, and simple assay. In this study, we developed and optimized a sensitive reverse transcription (RT)-RPA assay for the rapid detection of SARS-CoV-2 using SYBR Green I and/or lateral flow (LF) strip. The analytical sensitivity and specificity of the RT-RPA assay were tested by using 10-fold serial diluted synthetic RNA and genomic RNA of similar viruses, respectively. Clinical sensitivity and specificity of the RT-RPA assay were carried out using 78 positive and 35 negative nasopharyngeal samples. The detection limit of both RPA and RT-qPCR assays was 7.659 and 5 copies/μL RNA, respectively with no cross reactivity with other viruses. The clinical sensitivity and specificity of RT-RPA were 98% and 100%, respectively. Our study showed that RT-RPA represents a viable alternative to RT-qPCR for the detection of SARS-CoV-2, especially in areas with limited infrastructure.
    Matched MeSH terms: Recombinases/genetics
  4. Ho WY, Choo QC, Chew CH
    Microb Drug Resist, 2017 Mar;23(2):215-223.
    PMID: 27203527 DOI: 10.1089/mdr.2015.0250
    We investigated the epidemiology and clonality of 175 nonrepetitive methicillin-resistant Staphylococcus aureus (MRSA) isolates from clinical specimens collected between 2011 and 2012 in Kinta Valley in Malaysia. Molecular tools such as polymerase chain reaction, pulsed-field gel electrophoresis, and staphylococcal protein A (spa) typing were used. Our study revealed the predominance of three closely related ermA(+) SCCmec type III pulsotypes belonging to spa type t037 (Brazilian-Hungarian clone), which were deficient in the locus F, but positive for the ccrC gene in majority (65.7%) of the MRSA infections in this region. The first evidence of SCCmec type II MRSA in the country, belonging to spa type t2460, was also noted. Although the carriage of pvl gene was uncommon (8.6%) and mostly confined to either SCCmec type IV or SCCmec type V isolates, most of these isolates belonged to spa types t345 or t657, which are associated with the Bengal-Bay CA-MRSA clone. Interestingly, spa t304 and t690 SCCmec type IV pvl(+) were also detected among the MRSA isolates. Data from this study show the rise of uncommon clones among MRSA isolates in Malaysia.
    Matched MeSH terms: Recombinases/genetics*
  5. Nuryastuti T, Henny C, Henk JB, Roel K, Abu TA, Bastiaan PK
    Med J Malaysia, 2008 Jul;63 Suppl A:97.
    PMID: 19025002
    Phenotypic variation in biofilm formation is common in clinical isolates of S. epidermidis. In the current study, nearly 5% of all clinical isolates analysed showed phenotypic variation in biofilm forming ability and electrophoretic mobility (EM). This is the first report of S. epidermidis strains irreversibly switching from biofilm-positive to biofilm-negative phenotype by spontaneous deletion of icaADBC genes which represents a new, possibly common mechanism of phenotypic variation.
    Matched MeSH terms: Rec A Recombinases/genetics*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links