Displaying all 4 publications

Abstract:
Sort:
  1. Alirezalu K, Pirouzi S, Yaghoubi M, Karimi-Dehkordi M, Jafarzadeh S, Mousavi Khaneghah A
    Meat Sci, 2021 Jun;176:108475.
    PMID: 33684807 DOI: 10.1016/j.meatsci.2021.108475
    In the current study, the effect on packaged beef fillets (1 × 5 × 8 cm) of using active chitosan film (1%) was investigated. The fillets were stored at 4 °C for 12 days, and the film contained ɛ-polylysine (ɛ-PL) (0.3, 0.6, and 0.9% w/w). Chemical, microbiological, sensory properties, and quality indices of the fillets were investigated. Added to these factors was an assessment of the influence of ɛ-polylysine incorporation on the optical, structural, barrier, and mechanical specifications (elongation at break and tensile strength) of chitosan films. Based on the findings, a significant difference among the corresponding values to thickness, color, water vapor permeability (WVP), and mechanical specifications between the treated films by ɛ-PL and untreated films were noted. In addition, higher values of thickness and tensile strength were correlated with ɛ-PL added active chitosan films while compared with control samples. Additionally, no significant differences regarding the proximate composition (including protein, moisture, and fat) among beef fillet samples were observed. In this regard, due to significantly lower levels of pH, TVB-N, and TBARS ɛ-PL in enriched films, this technique demonstrated some protective effects on beef fillets. Another observation was that lower levels of the total viable count, coliform, mold, yeasts, and higher sensory properties were significantly associated with samples with added ɛ-PL (0.9%). Therefore, adding ɛ-PL into chitosan films could be introduced as an effective technique to extend the shelf life of beef fillets and maintain their quality indices during refrigerated storage.
    Matched MeSH terms: Red Meat/microbiology
  2. Wameadesa N, Sae-lim A, Hayeebilan F, Rattanachuay P, Sukhumungoon P
    PMID: 29642296
    Local Thai and imported Malaysian beef in southern Thailand area carry
    several Shiga toxin-producing Escherichia coli (STEC) serotypes. STEC O104 is an
    important pathogen capable of causing outbreaks with considerable morbidity
    and mortality. This study investigated the presence of E. coli O104 from local Thai
    and imported Malaysian beef obtained from markets in Hat Yai City, Songkhla
    Province during August 2015 - February 2016. Thirty-one E. coli O104 strains
    were isolated from 12 beef samples (16% and 23% Thai and imported Malaysian,
    respectively). Thirty strains possessed aggA (coding for a major component of
    AAF/I fimbriae), a gene associated with enteroaggregative E. coli (EAEC) pathotype,
    and all strains carried fimH (encoding Type 1 fimbriae). Thirty strains
    belonged to phylogenetic group B1 and one strain (from Malaysian beef) to group
    A. Agglutination of yeast cells was observed among 29 E. coli O104 strains. Investigation
    of stx2 phage occupancy loci demonstrated that sbcB was occupied in 12
    strains. Antimicrobial susceptibility assay revealed that 7 strains were resistant
    to at least one antimicrobial agent and two were multi-drug resistant. One strain
    carried extended spectrum β-lactamase gene blaCTX-M and three carried blaTEM. PFGE-generated DNA profiling showed identical DNA pattern between that of
    one EAEC O104 strain from Thai beef and another from Malaysian beef, indicating
    that these two strains originated from the same clone. This is the first report
    in Thailand describing the presence of EAEC O104 from both Thai and imported
    Malaysian beef and their transfer between both countries. Thorough surveillance
    of this pathogen in fresh meats and vegetables should help to prevent any possible
    outbreak of E. coli O104.
    Matched MeSH terms: Red Meat/microbiology*
  3. Yusuf AL, Adeyemi KD, Roselina K, Alimon AR, Goh YM, Samsudin AA, et al.
    Food Res Int, 2018 09;111:699-707.
    PMID: 30007735 DOI: 10.1016/j.foodres.2018.06.015
    The effects of dietary supplementation of different parts of Andrographis paniculata on fatty acids, lipid oxidation, microbiota and quality attributes of Longissimus thoracis et lumborum (LTL) muscle in goats were assessed. Twenty four, entire Boer bucks (4 months old; 20.18 ± 0.19 kg BW) were randomly allotted to either a basal diet without additive (AP0), a basal diet + 1.5% Andrographis paniculata leaves (APL) or a basal diet + 1.5% Andrographis paniculata whole plant (APW). The bucks were fed the diets for 100 d and slaughtered. The LTL muscle was subjected to a 7 d chill storage. The AP0 meat had higher (p meat. The concentrations of total C18:1trans, total CLA, C18:1n-9, C18:2n-6, C18:3n-3 and C20:5n-3 were higher (p meat than the AP0 meat. Diets had no effect (p > .05) on muscle glycogen, pH, drip loss, chemical composition and lactic acid bacteria count. Cooking loss, shear force, and TBARS values were lower (p meat compared with AP0 (26.49%, 1.13 kg, 0.23 mg MDA/kg) meat. Meat redness was higher (p meat were higher (p meat. Total viable counts and populations of Pseudomonas spp, Escherichia coli and Enterobacteriacea were higher (p meat than in APL and APW meat. The APL exhibited higher (p 
    Matched MeSH terms: Red Meat/microbiology
  4. Abuelhassan NN, Mutalib SA, Gimba FI, Yusoff WM
    Environ Sci Pollut Res Int, 2016 Sep;23(17):17553-62.
    PMID: 27234829 DOI: 10.1007/s11356-016-6954-0
    This study aimed at determining the presence and characterization of Escherichia coli and Shiga toxin-producing E. coli (STEC) from imported frozen beef meats. Seventy-four (74) frozen imported beef meat samples from two countries, India (42 samples) and Australia (32 samples), were collected and tested for E. coli. These samples were purchased from the frozen meat sections of five different supermarkets in different locations in Selangor, Malaysia, from April 2012 to October 2014. A total of 222 E. coli strains were isolated from the meat samples; 126 strains were isolated from country A (India), and 96 E. coli strains were from country of origin B (Australia), respectively. A total of 70 E. coli strains were identified and characterized. All E. coli strains were isolated into Fluorocult medium and identified using API 20E kit. All selected E. coli strains were characterized for Shiga toxin genes (stx1 and stx2). All biochemically identified E. coli in this study were further subjected to molecular detection through polymerase chain reaction (PCR) amplification and characterization using 16S ribosomal RNA (rRNA) gene of Shiga toxin-producing E. coli. Of the 70 E. coli strains, 11 strains were positive for both Shiga toxin genes (stx1 and stx2) and 11 (11/70) strains were positive for stx1 gene, while 25 (25/70) strains were positive for stx2 gene. The analysis of 16S rRNA gene of all the E. coli isolates in this study was successfully sequenced and analyzed, and based on sequence data obtained, a phylogenetic tree of the 16S rRNA gene was performed using Clustal W programme in MEGA 6.06 software. Phylogenetic tree showed that the E. coli isolates in our study cluster with the strain of E. coli isolated in other countries, which further confirm that the isolates of E. coli in this study are similar to those obtained in other studies. As a result, all the strains obtained in this study proved to be a strain of pathogenic E. coli, which may cause a serious outbreak of food-borne disease. The isolation of pathogenic E. coli strains from the imported meat samples calls for prudent management of imported meats by the relevant authorities.
    Matched MeSH terms: Red Meat/microbiology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links