Displaying all 8 publications

Abstract:
Sort:
  1. Lim WL, Lim CT, Chye JK
    Med J Malaysia, 1998 Dec;53(4):376-84.
    PMID: 10971981
    Thirty preterm infants weighing > or = 800 g with clinical and radiological evidence of respiratory distress syndrome (RDS) requiring mechanical ventilation with FiO2 of > or = 40% were given modified bovine surfactant (Survanta). They were compared with equal number of historical controls. Infants who received surfactant showed prompt and highly significant improvement in FiO2, mean airway pressure, arterial/alveolar oxygen tension ratio and ventilatory index. There was significant improvement in mortality rate (10% vs 33%; p = 0.03). Among the survivors, surfactant-treated infants required shorter duration of continuous positive airway pressure (CPAP) (3.4 vs 9.6 days; p = 0.04). For survivors with birthweight of > 1000 g, surfactant-treated infants required shorter duration of ventilatory support (intermittent positive pressure ventilation + CPAP) (7.5 vs 18.9 days, p = 0.02). Overall, surfactant-treated infants achieved full enteral feeds sooner (15.7 days vs 24.6 days; p = 0.03) and required shorter duration of total parenteral nutrition (13.9 days vs 25.6 days; p = 0.02). We concluded that surfactant replacement therapy was effective in the treatment of preterm infants with RDS.
    Matched MeSH terms: Respiratory Distress Syndrome, Newborn/mortality
  2. Ho JJ, Subramaniam P, Sivakaanthan A, Davis PG
    Cochrane Database Syst Rev, 2020 10 15;10:CD002975.
    PMID: 33058139 DOI: 10.1002/14651858.CD002975.pub2
    BACKGROUND: The application of continuous positive airway pressure (CPAP) has been shown to have some benefits in the treatment of preterm infants with respiratory distress. CPAP has the potential to reduce lung damage, particularly if applied early before atelectasis has occurred. Early application may better conserve an infant's own surfactant stores and consequently may be more effective than later application.

    OBJECTIVES: • To determine if early compared with delayed initiation of CPAP results in lower mortality and reduced need for intermittent positive-pressure ventilation in preterm infants in respiratory distress ○ Subgroup analyses were planned a priori on the basis of weight (with subdivisions at 1000 grams and 1500 grams), gestation (with subdivisions at 28 and 32 weeks), and according to whether surfactant was used ▫ Sensitivity analyses based on trial quality were also planned ○ For this update, we have excluded trials using continuous negative pressure SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2020, Issue 6), in the Cochrane Library; Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations Daily and Versions(R); and the Cumulative Index to Nursing and Allied Health Literatue (CINAHL), on 30 June 2020. We also searched clinical trials databases and the reference lists of retrieved articles for randomised controlled trials (RCTs) and quasi-RCTs.

    SELECTION CRITERIA: We included trials that used random or quasi-random allocation to either early or delayed CPAP for spontaneously breathing preterm infants in respiratory distress.

    DATA COLLECTION AND ANALYSIS: We used the standard methods of Cochrane and Cochrane Neonatal, including independent assessment of trial quality and extraction of data by two review authors. We used the GRADE approach to assess the certainty of evidence.

    MAIN RESULTS: We found four studies that recruited a total of 119 infants. Two were quasi-randomised, and the other two did not provide details on the method of randomisation or allocation used. None of these studies used blinding of the intervention or the outcome assessor. Evidence showed uncertainty about whether early CPAP has an effect on subsequent use of intermittent positive-pressure ventilation (IPPV) (typical risk ratio (RR) 0.77, 95% confidence interval (CI) 0.43 to 1.38; typical risk difference (RD) -0.08, 95% CI -0.23 to 0.08; I² = 0%, 4 studies, 119 infants; very low-certainty evidence) or mortality (typical RR 0.93, 95% CI 0.43 to 2.03; typical RD -0.02, 95% CI -0.15 to 0.12; I² = 33%, 4 studies, 119 infants; very low-certainty evidence). The outcome 'failed treatment' was not reported in any of these studies. There was an uncertain effect on air leak (pneumothorax) (typical RR 1.09, 95% CI 0.39 to 3.04, I² = 0%, 3 studies, 98 infants; very low-certainty evidence). No trials reported intraventricular haemorrhage or necrotising enterocolitis. No cases of retinopathy of prematurity were reported in one study (21 infants). One case of bronchopulmonary dysplasia was reported in each group in one study involving 29 infants. Long-term outcomes were not reported.

    AUTHORS' CONCLUSIONS: All four small trials included in this review were performed in the 1970s or the early 1980s, and we are very uncertain whether early application of CPAP confers clinical benefit in the treatment of respiratory distress, or whether it is associated with any adverse effects. Further trials should be directed towards establishing the appropriate level of CPAP and the timing and method of administration of surfactant when used along with CPAP.

    Matched MeSH terms: Respiratory Distress Syndrome, Newborn/mortality
  3. Ho J, Malaysian Very Low Birth Weight Study Group
    Singapore Med J, 2001 Aug;42(8):355-9.
    PMID: 11764052
    To compare the neonatal course of small for gestational age (SGA) and appropriate for gestational age (AGA) preterm infants 1500 g or less birthweight.
    Matched MeSH terms: Respiratory Distress Syndrome, Newborn/mortality
  4. Ho JJ, Subramaniam P, Davis PG
    PMID: 26141572 DOI: 10.1002/14651858.CD002271.pub2
    BACKGROUND: Respiratory distress syndrome (RDS) is the single most important cause of morbidity and mortality in preterm infants. In infants with progressive respiratory insufficiency, intermittent positive pressure ventilation (IPPV) with surfactant is the standard treatment for the condition, but it is invasive, potentially resulting in airway and lung injury. Continuous distending pressure (CDP) has been used for the prevention and treatment of RDS, as well as for the prevention of apnoea, and in weaning from IPPV. Its use in the treatment of RDS might reduce the need for IPPV and its sequelae.

    OBJECTIVES: To determine the effect of continuous distending pressure (CDP) on the need for IPPV and associated morbidity in spontaneously breathing preterm infants with respiratory distress.Subgroup analyses were planned on the basis of birth weight (> or < 1000 or 1500 g), gestational age (groups divided at about 28 weeks and 32 weeks), methods of application of CDP (i.e. CPAP and CNP), application early versus late in the course of respiratory distress and high versus low pressure CDP and application of CDP in tertiary compared with non-tertiary hospitals, with the need for sensitivity analysis determined by trial quality.At the 2008 update, the objectives were modified to include preterm infants with respiratory failure.

    SEARCH METHODS: We used the standard search strategy of the Neonatal Review Group. This included searches of the Oxford Database of Perinatal Trials, the Cochrane Central Register of Controlled Trials (CENTRAL, 2015 Issue 4), MEDLINE (1966 to 30 April 2015) and EMBASE (1980 to 30 April 2015) with no language restriction, as well as controlled-trials.com, clinicaltrials.gov and the International Clinical Trials Registry Platform of the World Health Organization (WHO).

    SELECTION CRITERIA: All random or quasi-random trials of preterm infants with respiratory distress were eligible. Interventions were continuous distending pressure including continuous positive airway pressure (CPAP) by mask, nasal prong, nasopharyngeal tube or endotracheal tube, or continuous negative pressure (CNP) via a chamber enclosing the thorax and the lower body, compared with spontaneous breathing with oxygen added as necessary.

    DATA COLLECTION AND ANALYSIS: We used standard methods of The Cochrane Collaboration and its Neonatal Review Group, including independent assessment of trial quality and extraction of data by each review author.

    MAIN RESULTS: We included six studies involving 355 infants - two using face mask CPAP, two CNP, one nasal CPAP and one both CNP (for less ill babies) and endotracheal CPAP (for sicker babies). For this update, we included no new trials.Continuous distending pressure (CDP) is associated with lower risk of treatment failure (death or use of assisted ventilation) (typical risk ratio (RR) 0.65, 95% confidence interval (CI) 0.52 to 0.81; typical risk difference (RD) -0.20, 95% CI -0.29 to -0.10; number needed to treat for an additional beneficial outcome (NNTB) 5, 95% CI 4 to 10; six studies; 355 infants), lower overall mortality (typical RR 0.52, 95% CI 0.32 to 0.87; typical RD -0.15, 95% CI -0.26 to -0.04; NNTB 7, 95% CI 4 to 25; six studies; 355 infants) and lower mortality in infants with birth weight above 1500 g (typical RR 0.24, 95% CI 0.07 to 0.84; typical RD -0.28, 95% CI -0.48 to -0.08; NNTB 4, 95% CI 2.00 to 13.00; two studies; 60 infants). Use of CDP is associated with increased risk of pneumothorax (typical RR 2.64, 95% CI 1.39 to 5.04; typical RD 0.10, 95% CI 0.04 to 0.17; number needed to treat for an additional harmful outcome (NNTH) 17, 95% CI 17.00 to 25.00; six studies; 355 infants). We found no difference in bronchopulmonary dysplasia (BPD), defined as oxygen dependency at 28 days (three studies, 260 infants), as well as no difference in outcome at nine to 14 years (one study, 37 infants).

    AUTHORS' CONCLUSIONS: In preterm infants with respiratory distress, the application of CDP as CPAP or CNP is associated with reduced respiratory failure and mortality and an increased rate of pneumothorax. Four out of six of these trials were done in the 1970s. Therefore, the applicability of these results to current practice is difficult to assess. Further research is required to determine the best mode of administration.

    Matched MeSH terms: Respiratory Distress Syndrome, Newborn/mortality
  5. Boo NY, Puah CH, Lye MS
    J Trop Pediatr, 2000 Feb;46(1):15-20.
    PMID: 10730035
    A case-control study was carried out on 152 extremely low birthweight (ELBW, < 1000 g) infants born consecutively in a large Malaysian maternity hospital during a 21-month period to determine the significant predictors associated with survival at discharge. Forty-nine (32.2 per cent) of these infants survived and 103 (67.8 per cent) died. The survivors weighed significantly heavier (mean = 888 g, SD = 99) than infants who died (mean = 763 g, SD = 131; p < 0.0001). They were also of higher gestational age (mean = 28.7 weeks, SD = 2.2) than those who died (mean = 26.7 weeks, SD = 2.5; p < 0.0001). Logistic regression analysis showed that, after controlling for various confounders, only three factors were significantly associated with the survival of these infants. These were: (1) increasing birthweight of the infants (with every gram increase in birthweight, adjusted odds ratio of survival was: 1.009; 95 per cent CI 1.004, 1.015; p = 0.0006); (2) given nasal continuous positive airway pressure for treatment of respiratory distress syndrome (adjusted odds ratio of survival: 4.2; 95 per cent CI 1.2, 14.0; p = 0.02); and (3) given expressed breastmilk (adjusted odds ratio of survival: 57.5; 95 per cent CI: 7, 474; p = 0.0002). Maternal illness, intrapartum problems, ethnicity, gestational age, use of antenatal steroid, modes of delivery, Apgar scores, congenital anomalies, respiratory distress syndrome, persistent ductus arteriosus, septicemia, necrotising enterocolitis, chronic lung disease, oxygen therapy, intermittent positive pressure ventilation, surfactant therapy, and blood transfusion were not significant factors associated with increased survival.
    Matched MeSH terms: Respiratory Distress Syndrome, Newborn/mortality*
  6. Lim NL, Nordin MM, Cheah IG
    Med J Malaysia, 1994 Mar;49(1):4-11.
    PMID: 8057989
    An open prospective descriptive pilot study was undertaken to assess the effectiveness and experience in the use of ExosurfNeonatal, a synthetic surfactant, on preterm infants with respiratory distress syndrome in the neonatal intensive care unit of the Paediatric Institute. Of 10 infants treated, seven (70%) survived with no major handicap on discharge. The mean duration of ventilation for these survivors was 6.4 days, mean duration of oxygen therapy 9.1 days and mean length of hospital stay 38.3 days. A comparison was made with a retrospective analysis of 15 neonates who were admitted during an eight month period prior to the pilot study. These infants were mechanically ventilated for respiratory distress syndrome but not given surfactant therapy. Of these, nine (60%) survived (P > 0.1 compared to Exosurf treated infants), but two developed post haemorrhagic hydrocephalus requiring shunting. For these nine survivors, the mean duration of ventilator therapy was 12.6 days, the mean duration of oxygen therapy 20.7 days and the mean length of hospital stay 70.8 days. This difference was statistically significant (P < 0.05). Of the three ExosurfNeonatal treated infants who died, two were extremely premature. Both developed grade IV periventricular haemorrhage while the third infant was admitted in shock and hypothermia and died from intraventricular haemorrhage and pulmonary interstitial emphysema. Except for the very sick and extremely premature infants, surfactant therapy is useful in reducing the mortality and morbidity of premature infants with respiratory distress syndrome in our neonatal intensive unit.
    Matched MeSH terms: Respiratory Distress Syndrome, Newborn/mortality
  7. Ho JJ, Subramaniam P, Davis PG
    Cochrane Database Syst Rev, 2020 10 15;10:CD002271.
    PMID: 33058208 DOI: 10.1002/14651858.CD002271.pub3
    BACKGROUND: Respiratory distress, particularly respiratory distress syndrome (RDS), is the single most important cause of morbidity and mortality in preterm infants. In infants with progressive respiratory insufficiency, intermittent positive pressure ventilation (IPPV) with surfactant has been the usual treatment, but it is invasive, potentially resulting in airway and lung injury. Continuous positive airway pressure (CPAP) has been used for the prevention and treatment of respiratory distress, as well as for the prevention of apnoea, and in weaning from IPPV. Its use in the treatment of RDS might reduce the need for IPPV and its sequelae.

    OBJECTIVES: To determine the effect of continuous distending pressure in the form of CPAP on the need for IPPV and associated morbidity in spontaneously breathing preterm infants with respiratory distress.

    SEARCH METHODS: We used the standard strategy of Cochrane Neonatal to search CENTRAL (2020, Issue 6); Ovid MEDLINE and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Daily and Versions; and CINAHL on 30 June 2020. We also searched clinical trials databases and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials.

    SELECTION CRITERIA: All randomised or quasi-randomised trials of preterm infants with respiratory distress were eligible. Interventions were CPAP by mask, nasal prong, nasopharyngeal tube or endotracheal tube, compared with spontaneous breathing with supplemental oxygen as necessary.

    DATA COLLECTION AND ANALYSIS: We used standard methods of Cochrane and its Neonatal Review Group, including independent assessment of risk of bias and extraction of data by two review authors. We used the GRADE approach to assess the certainty of evidence. Subgroup analyses were planned on the basis of birth weight (greater than or less than 1000 g or 1500 g), gestational age (groups divided at about 28 weeks and 32 weeks), timing of application (early versus late in the course of respiratory distress), pressure applied (high versus low) and trial setting (tertiary compared with non-tertiary hospitals; high income compared with low income) MAIN RESULTS: We included five studies involving 322 infants; two studies used face mask CPAP, two studies used nasal CPAP and one study used endotracheal CPAP and continuing negative pressure for a small number of less ill babies. For this update, we included one new trial. CPAP was associated with lower risk of treatment failure (death or use of assisted ventilation) (typical risk ratio (RR) 0.64, 95% confidence interval (CI) 0.50 to 0.82; typical risk difference (RD) -0.19, 95% CI -0.28 to -0.09; number needed to treat for an additional beneficial outcome (NNTB) 6, 95% CI 4 to 11; I2 = 50%; 5 studies, 322 infants; very low-certainty evidence), lower use of ventilatory assistance (typical RR 0.72, 95% CI 0.54 to 0.96; typical RD -0.13, 95% CI -0.25 to -0.02; NNTB 8, 95% CI 4 to 50; I2 = 55%; very low-certainty evidence) and lower overall mortality (typical RR 0.53, 95% CI 0.34 to 0.83; typical RD -0.11, 95% CI -0.18 to -0.04; NNTB 9, 95% CI 2 to 13; I2 = 0%; 5 studies, 322 infants; moderate-certainty evidence). CPAP was associated with increased risk of pneumothorax (typical RR 2.48, 95% CI 1.16 to 5.30; typical RD 0.09, 95% CI 0.02 to 0.16; number needed to treat for an additional harmful outcome (NNTH) 11, 95% CI 7 to 50; I2 = 0%; 4 studies, 274 infants; low-certainty evidence). There was no evidence of a difference in bronchopulmonary dysplasia, defined as oxygen dependency at 28 days (RR 1.04, 95% CI 0.35 to 3.13; I2 = 0%; 2 studies, 209 infants; very low-certainty evidence). The trials did not report use of surfactant, intraventricular haemorrhage, retinopathy of prematurity, necrotising enterocolitis and neurodevelopment outcomes in childhood.

    AUTHORS' CONCLUSIONS: In preterm infants with respiratory distress, the application of CPAP is associated with reduced respiratory failure, use of mechanical ventilation and mortality and an increased rate of pneumothorax compared to spontaneous breathing with supplemental oxygen as necessary. Three out of five of these trials were conducted in the 1970s. Therefore, the applicability of these results to current practice is unclear. Further studies in resource-poor settings should be considered and research to determine the most appropriate pressure level needs to be considered.

    Matched MeSH terms: Respiratory Distress Syndrome, Newborn/mortality
  8. Chye JK, Lim CT
    Singapore Med J, 1999 Sep;40(9):565-70.
    PMID: 10628243
    To determine the survival rates and risk factors associated with mortality in premature very low birth weight or VLBW (< or = 1500 grams) infants.
    Matched MeSH terms: Respiratory Distress Syndrome, Newborn/mortality
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links