Displaying all 10 publications

Abstract:
Sort:
  1. Mat Razali N, Hisham SN, Kumar IS, Shukla RN, Lee M, Abu Bakar MF, et al.
    Int J Mol Sci, 2021 Feb 22;22(4).
    PMID: 33671736 DOI: 10.3390/ijms22042183
    Proper management of agricultural disease is important to ensure sustainable food security. Staple food crops like rice, wheat, cereals, and other cash crops hold great export value for countries. Ensuring proper supply is critical; hence any biotic or abiotic factors contributing to the shortfall in yield of these crops should be alleviated. Rhizoctonia solani is a major biotic factor that results in yield losses in many agriculturally important crops. This paper focuses on genome informatics of our Malaysian Draft R. solani AG1-IA, and the comparative genomics (inter- and intra- AG) with four AGs including China AG1-IA (AG1-IA_KB317705.1), AG1-IB, AG3, and AG8. The genomic content of repeat elements, transposable elements (TEs), syntenic genomic blocks, functions of protein-coding genes as well as core orthologous genic information that underlies R. solani's pathogenicity strategy were investigated. Our analyses show that all studied AGs have low content and varying profiles of TEs. All AGs were dominant for Class I TE, much like other basidiomycete pathogens. All AGs demonstrate dominance in Glycoside Hydrolase protein-coding gene assignments suggesting its importance in infiltration and infection of host. Our profiling also provides a basis for further investigation on lack of correlation observed between number of pathogenicity and enzyme-related genes with host range. Despite being grouped within the same AG with China AG1-IA, our Draft AG1-IA exhibits differences in terms of protein-coding gene proportions and classifications. This implies that strains from similar AG do not necessarily have to retain similar proportions and classification of TE but must have the necessary arsenal to enable successful infiltration and colonization of host. In a larger perspective, all the studied AGs essentially share core genes that are generally involved in adhesion, penetration, and host colonization. However, the different infiltration strategies will depend on the level of host resilience where this is clearly exhibited by the gene sets encoded for the process of infiltration, infection, and protection from host.
    Matched MeSH terms: Rhizoctonia/genetics*; Rhizoctonia/pathogenicity*; Rhizoctonia/physiology
  2. Latiffah Zakaria, Muhamad Izham Muhamad Jamil, Intan Sakinah Mohd Anuar
    Trop Life Sci Res, 2016;27(1):153-162.
    MyJurnal
    Endophytic fungi inhabit apparently healthy plant tissues and are prevalent in
    terrestrial plants, especially root tissues, which harbour a wide assemblage of fungal
    endophytes. Therefore, this study focused on the isolation and characterisation of
    endophytic fungi from the roots of wild banana (Musa acuminata). A total of 31 isolates of
    endophytic fungi were isolated from 80 root fragments. The endophytic fungi were initially
    sorted according to morphological characteristics and identified using the sequences of
    the translation elongation factor-1α (TEF-1α) gene of Fusarium spp. and the Internal
    Transcribed Spacer (ITS) regions of other fungi. The most common fungal isolates were
    species of the genus Fusarium, which were identified as F. proliferatum, Fusarium sp.,
    F. solani species complex, and F. oxysporum. Other isolated endophytic fungi included
    Curvularia lunata, Trichoderma atroviride, Calonectria gracilis, Rhizoctonia solani,
    Bionectria ochroleuca, and Stromatoneurospora phoenix (Xylariceae). Several of the
    fungal genera, such as Fusarium, Trichoderma, Rhizoctonia, and Xylariceae, are among
    the common fungal endophytes reported in plants. This study showed that the roots of wild
    banana harbour a diverse group of endophytic fungi.
    Matched MeSH terms: Rhizoctonia
  3. Nadarajah K, Mat Razali N, Cheah BH, Sahruna NS, Ismail I, Tathode M, et al.
    Genome Announc, 2017 Oct 26;5(43).
    PMID: 29074665 DOI: 10.1128/genomeA.01188-17
    Sheath blight, caused by Rhizoctonia solani anastomosis group 1 subgroup 1A (AG1-1A), is one of the most devastating rice diseases worldwide. Here, we report the draft genome sequence of R. solani AG1-1A strain 1802/KB isolated from a popular Malaysian rice variety. To the best of our knowledge, this is the second reported representative genome from AG1-1A.
    Matched MeSH terms: Rhizoctonia
  4. Nadarajah K, Omar NS, Rosli MM, Shin Tze O
    Biomed Res Int, 2014;2014:434257.
    PMID: 25258710 DOI: 10.1155/2014/434257
    Two field isolates of Rhizoctonia solani were isolated from infected paddy plants in Malaysia. These isolates were verified via ITS-rDNA analysis that yielded ~720 bp products of the ITS1-5.8S-ITS4 region, respectively. The sequenced products showed insertion and substitution incidences which may result in strain diversity and possible variation in disease severity. These strains showed some regional and host-specific relatedness via Maximum Likelihood and further phylogenetic analysis via Maximum Parsimony showed that these strains were closely related to R. solani AG1-1A (with 99-100% identity). Subsequent to strain verification and analysis, these isolates were used in the screening of twenty rice varieties for tolerance or resistance to sheath blight via mycelial plug method where both isolates (1801 and 1802) showed resistance or moderate resistance to Teqing, TETEP, and Jasmine 85. Isolate 1802 was more virulent based on the disease severity index values. This study also showed that the mycelial plug techniques were efficient in providing uniform inoculum and humidity for screening. In addition this study shows that the disease severity index is a better mode of scoring for resistance compared to lesion length. These findings will provide a solid basis for our future breeding and screening activities at the institution.
    Matched MeSH terms: Rhizoctonia/genetics*; Rhizoctonia/isolation & purification*; Rhizoctonia/physiology
  5. NUR ELIA NADHIRA MOHD ASMADI, WONG KAH YIN, NUR HADINA SALEH, NURUL FAZIHA IBRAHIM, SUHAIZAN LOB
    MyJurnal
    Black spot disease is a significant worldwide disease on the rose plant. Due to this infection, the leaves become yellow and eventually fall off. The occurrence of this disease has become a major problem, especially in landscape purpose. Therefore, this research was conducted to isolate fungal species from black spot disease in rose and identify using morphological characteristics. Then, all the isolates were tested for pathogenicity to confirm Koch’s postulates. In this study, four fungal isolates have been successfully isolated from black spot disease in rose namely Rhizoctonia sp. (one isolate), Colletotrichum sp. (two isolates) and Penicillium sp. (one isolate). Based on pathogenicity test result using potato dextrose agar (PDA) plug technique, fungus UMTT27R (Penicillium sp.) showed highly pathogenic on rose’s leaves with disease severity (DS) = 88.89% followed by UMTT13R (Colletotrichum sp.) with DS=72.22%, UMTT21R (Colletotrichum sp.) with DS=66.67% and UMTT4R (Rhizoctonia sp.) with DS=61.11%. Correct identification of fungal pathogens is very important to strategize a proper method to control the black spot disease in rose cultivation. 
    Matched MeSH terms: Rhizoctonia
  6. Muslim A, Hyakumachi M, Kageyama K, Suwandi S
    Trop Life Sci Res, 2019 Jan;30(1):109-122.
    PMID: 30847036 DOI: 10.21315/tlsr2019.30.1.7
    Treatment with hypovirulent binucleate Rhizoctonia (HBNR) isolates induced systemic resistance against anthracnose infected by Colletotrichum orbiculare in cucumber, as there were no direct interaction between HBNR and C. orbiculare. This is because of the different distances between HBNR and C. orbiculare, where the root was treated with HBNR isolate and C. orbiculare was challenged and inoculated in leaves or first true leaves were treated with HBNR isolate and C. orbiculare was challenged and inoculated in second true leaves. The use of barley grain inocula and culture filtrates of HBNR significantly reduced the lesion diameter compared to the control (p = 0.05). The total lesion diameter reduction by applying barley grain inoculum of HBNR L2, W1, W7, and Rhv7 was 28%, 44%, 39%, and 40%, respectively. Similar results was also observed in treatment using culture filtrate, and the reduction of total lesion diameter by culture filtrate of HBNR L2, W1, W7, and Rhv7 was 45%, 46%, 42%, and 48%, respectively. When cucumber root was treated with culture filtrates of HBNR, the lignin was enhanced at the pathogen penetration, which is spread along the epidermis tissue of cucumber hypocotyls. Peroxidase activity in hypocotyls in the treated cucumber plant with culture filtrates of HBNR significantly increased before and after inoculation of pathogens as compared to the control. Significant enhancement was also observed in the fast-moving anodic peroxidase isozymes in the treated plants with culture filtrates of HBNR. The results showed the elicitor(s) contained in culture filtrates in HBNR. The lignin deposition as well as the peroxidase activity is an important step to prevent systemically immunised plants from pathogen infection.
    Matched MeSH terms: Rhizoctonia
  7. Nurul ‘Izzah Mohd Sarmin, Noraziah M. Zin, Nik Marzuki Sidik, Franco CM, Ng KT, Kaewkla O
    Sains Malaysiana, 2012;41:547-551.
    Sembilan aktinomiset endofit telah berjaya dipencilkan daripada pokok yang mempunyai nilai ubatan dari beberapa tempat di Semenanjung Malaysia. Pencilan tersebut telah dikenalpasti melalui pemerhatian morfologi, amplifikasi gen 16S rRNA dan analisis penjujukan 16S rRNA. Saringan awal terhadap aktiviti antimikrob telah dilakukan dengan menggunakan teknik calitan plat. Pembentukan miselium substrat dan aerial, warna jisim spora, pigmen larut dan morfologi rantai spora pada semua pencilan menyerupai Streptomyces sp. dan Microbispora sp. Analisis filogenetik jujukan separa 16S rRNA mendapati pencilan SUK 08, SUK 10 dan SUK 15 saling berkaitan dengan Streptomyceseurythermus ATCC 14975T. Walau bagaimanapun pencilan ini telah dipencilkan dari tumbuhan yang berbeza. Pencilan ini didapati mempunyai aktiviti antimikrob terhadap bakteria dan kulat kajian. Empat pencilan aktif iaitu SUK 08, SUK10, SUK 12 dan SUK 15 berupaya untuk membunuh dan merencat sehingga 100% satu atau lebih organisma patogen seperti Bacillus subtilis, Aspergillus fumigatus, Aspergillus niger, Fusarium solani, Rhizoctonia solani dan Trichoderma viride. Kajian ini mengesahkan bahawa tumbuhan etnoperubatan adalah sumber pencarian aktinomiset endofit bioaktif yang berupaya menjadi sumber novel dalam pencarian agen antibakteria dan antimikotik.
    Matched MeSH terms: Rhizoctonia
  8. Ali SS, Asman A, Shao J, Firmansyah AP, Susilo AW, Rosmana A, et al.
    PMID: 31583107 DOI: 10.1186/s40694-019-0077-6
    Background: Ceratobasidium theobromae, a member of the Ceratobasidiaceae family, is the causal agent of vascular-streak dieback (VSD) of cacao, a major threat to the chocolate industry in the South-East Asia. The fastidious pathogen is very hard to isolate and maintain in pure culture, which is a major bottleneck in the study of its genetic diversity and genome.

    Result: This study describes for the first time, a 33.90 Mbp de novo assembled genome of a putative C. theobromae isolate from cacao. Ab initio gene prediction identified 9264 protein-coding genes, of which 800 are unique to C. theobromae when compared to Rhizoctonia spp., a closely related group. Transcriptome analysis using RNA isolated from 4 independent VSD symptomatic cacao stems identified 3550 transcriptionally active genes when compared to the assembled C. theobromae genome while transcripts for only 4 C. theobromae genes were detected in 2 asymptomatic stems. De novo assembly of the non-cacao associated reads from the VSD symptomatic stems uniformly produced genes with high identity to predicted genes in the C. theobromae genome as compared to Rhizoctonia spp. or genes found in Genbank. Further analysis of the predicted C. theobromae transcriptome was carried out identifying CAZy gene classes, KEGG-pathway associated genes, and 138 putative effector proteins.

    Conclusion: These findings put forth, for the first time, a predicted genome for the fastidious basidiomycete C. theobromae causing VSD on cacao providing a model for testing and comparison in the future. The C. theobromae genome predicts a pathogenesis model involving secreted effector proteins to suppress plant defense mechanisms and plant cell wall degrading enzymes.

    Matched MeSH terms: Rhizoctonia
  9. Singh P, Mazumdar P, Harikrishna JA, Babu S
    Planta, 2019 Nov;250(5):1387-1407.
    PMID: 31346804 DOI: 10.1007/s00425-019-03246-8
    MAIN CONCLUSION: Rice sheath blight research should prioritise optimising biological control approaches, identification of resistance gene mechanisms and application in genetic improvement and smart farming for early disease detection. Rice sheath blight, caused by Rhizoctonia solani AG1-1A, is one of the most devasting diseases of the crop. To move forward with effective crop protection against sheath blight, it is important to review the published information related to pathogenicity and disease management and to determine areas of research that require deeper study. While progress has been made in the identification of pathogenesis-related genes both in rice and in the pathogen, the mechanisms remain unclear. Research related to disease management practices has addressed the use of agronomic practices, chemical control, biological control and genetic improvement: Optimising nitrogen fertiliser use in conjunction with plant spacing can reduce spread of infection while smart agriculture technologies such as crop monitoring with Unmanned Aerial Systems assist in early detection and management of sheath blight disease. Replacing older fungicides with natural fungicides and use of biological agents can provide effective sheath blight control, also minimising environmental impact. Genetic approaches that show promise for the control of sheath blight include treatment with exogenous dsRNA to silence pathogen gene expression, genome editing to develop rice lines with lower susceptibility to sheath blight and development of transgenic rice lines overexpressing or silencing pathogenesis related genes. The main challenges that were identified for effective crop protection against sheath blight are the adaptive flexibility of the pathogen, lack of resistant rice varieties, abscence of single resistance genes for use in breeding and low access of farmers to awareness programmes for optimal management practices.
    Matched MeSH terms: Rhizoctonia/pathogenicity*
  10. Liao X, Fu Y, Zhang S, Duan YP
    Plant Dis, 2012 Feb;96(2):288.
    PMID: 30731824 DOI: 10.1094/PDIS-08-11-0639
    Indian spinach (Basella rubra L.) is a red stem species of Basella that is cultivated worldwide as an ornamental and the aerial parts are also consumed as a vegetable. In May of 2011, symptoms of damping-off were observed on approximately 10% of the plants at the stem base around the soil line of seedlings in a greenhouse in Homestead, FL. Lesions were initially water soaked, grayish to dark brown, irregular in shape, and sunken in appearance on large plants, causing the infected seedlings to collapse and eventually die. Symptomatic stem tissue was surface sterilized with 0.6% sodium hypochlorite, rinsed in sterile distilled water, air dried, and plated on potato dextrose agar (PDA). Plates were incubated at 25°C in darkness for 3 to 5 days. A fungus was isolated in all six isolations from symptomatic tissues on PDA. Fungal colonies on PDA were light gray to brown with abundant growth of mycelia, and the hyphae tended to branch at right angles when examined under a microscope. A septum was always present in the branch of hyphae near the originating point and a slight constriction at the branch was observed. Neither conidia nor conidiophores were found from the cultures on PDA. The characteristics of hyphae, especially the right angle branching of mycelia, indicate close similarity to those of Rhizoctonia solani (2,3). The internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced (GenBank Accession No. JN545836). Subsequent database searches by the BLASTN program indicated that the resulting sequence had a 100% identity over 472 bp with the corresponding gene sequence of R. solani anastomosis group (AG) 4 (GenBank Accession No. JF701752.1), a fungal pathogen reported to cause damping-off on many crops. Pathogenicity was confirmed through inoculation of healthy India spinach plants with the hyphae of isolates. Four 4-week-old plants were inoculated with the isolates by placing a 5-mm PDA plug of mycelia at the stem base and covering with a thin layer of the soil. Another four plants treated with sterile PDA served as a control. After inoculation, the plants were covered with plastic bags for 24 h and maintained in a greenhouse with ambient conditions. Four days after inoculation, water-soaked, brown lesions, identical to the symptoms described above, were observed on the stem base of all inoculated plants, whereas no symptoms developed on the control plants. The fungus was isolated from affected stem samples, and the identity was confirmed by microscopic appearance of the hyphae and sequencing the ITS1/ITS4 intergenic spacer region, fulfilling Koch's postulates. This pathogenicity test was conducted twice. R. solani has been reported to cause damping-off of B. rubra in Ghana (1) and Malaysia (4). To our knowledge, this is the first report of damping-off caused by R. solani AG-4 on Indian spinach in Florida and the United States. With the increased interest in producing Asian vegetables for food and ornamental purposes, the occurrence of damping-off on Indian spinach needs to be taken into account when designing programs for disease management in Florida. References: (1) H. A. Dade. XXIX. Bull. Misc. Inform. 6:205, 1940. (2) J. R. Parmeter et al. Phytopathology 57:218, 1967. (3) B. Sneh et al. Identification of Rhizoctonia species. The American Phytopathological Society, St Paul, MN, 1991. (4) T. H. Williams and P. S. W. Liu. Phytopathol. Pap. 19:1, 1976.
    Matched MeSH terms: Rhizoctonia
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links