Displaying all 7 publications

Abstract:
Sort:
  1. Yang T, Xiao Y, Zhang Z, Liang Y, Li G, Zhang M, et al.
    Sci Rep, 2018 09 28;8(1):14518.
    PMID: 30266999 DOI: 10.1038/s41598-018-32757-9
    Soft robots driven by stimuli-responsive materials have their own unique advantages over traditional rigid robots such as large actuation, light weight, good flexibility and biocompatibility. However, the large actuation of soft robots inherently co-exists with difficulty in control with high precision. This article presents a soft artificial muscle driven robot mimicking cuttlefish with a fully integrated on-board system including power supply and wireless communication system. Without any motors, the movements of the cuttlefish robot are solely actuated by dielectric elastomer which exhibits muscle-like properties including large deformation and high energy density. Reinforcement learning is used to optimize the control strategy of the cuttlefish robot instead of manual adjustment. From scratch, the swimming speed of the robot is enhanced by 91% with reinforcement learning, reaching to 21 mm/s (0.38 body length per second). The design principle behind the structure and the control of the robot can be potentially useful in guiding device designs for demanding applications such as flexible devices and soft robots.
    Matched MeSH terms: Robotics/instrumentation*
  2. Pirouzi G, Abu Osman NA, Oshkour AA, Ali S, Gholizadeh H, Abas WA
    Sensors (Basel), 2014;14(9):16754-65.
    PMID: 25207872 DOI: 10.3390/s140916754
    The suspension system and socket fitting of artificial limbs have major roles and vital effects on the comfort, mobility, and satisfaction of amputees. This paper introduces a new pneumatic suspension system that overcomes the drawbacks of current suspension systems in donning and doffing, change in volume during daily activities, and pressure distribution in the socket-stump interface. An air pneumatic suspension system (APSS) for total-contact sockets was designed and developed. Pistoning and pressure distribution in the socket-stump interface were tested for the new APSS. More than 95% of the area between each prosthetic socket and liner was measured using a Tekscan F-Scan pressure measurement which has developed matrix-based pressure sensing systems. The variance in pressure around the stump was 8.76 kPa. APSS exhibits less pressure concentration around the stump, improved pressure distribution, easy donning and doffing, adjustability to remain fitted to the socket during daily activities, and more adaptability to the changes in stump volume. The volume changes were adjusted by utility of air pressure sensor. The vertical displacement point and reliability of suspension were assessed using a photographic method. The optimum pressure in every level of loading weight was 55 kPa, and the maximum displacement was 6 mm when 90 N of weight was loaded.
    Matched MeSH terms: Robotics/instrumentation*
  3. Khalid YM, Gouwanda D, Parasuraman S
    Proc Inst Mech Eng H, 2015 Jun;229(6):452-63.
    PMID: 25979442 DOI: 10.1177/0954411915585597
    Ankle rehabilitation robots are developed to enhance ankle strength, flexibility and proprioception after injury and to promote motor learning and ankle plasticity in patients with drop foot. This article reviews the design elements that have been incorporated into the existing robots, for example, backdrivability, safety measures and type of actuation. It also discusses numerous challenges faced by engineers in designing this robot, including robot stability and its dynamic characteristics, universal evaluation criteria to assess end-user comfort, safety and training performance and the scientific basis on the optimal rehabilitation strategies to improve ankle condition. This article can serve as a reference to design robot with better stability and dynamic characteristics and good safety measures against internal and external events. It can also serve as a guideline for the engineers to report their designs and findings.
    Matched MeSH terms: Robotics/instrumentation*
  4. Abd Razak NA, Abu Osman NA, Gholizadeh H, Ali S
    Biomed Eng Online, 2014 Apr 23;13:49.
    PMID: 24755242 DOI: 10.1186/1475-925X-13-49
    BACKGROUND: The design and performance of a new development prosthesis system known as biomechatronics wrist prosthesis is presented in this paper. The prosthesis system was implemented by replacing the Bowden tension cable of body powered prosthesis system using two ultrasonic sensors, two servo motors and microcontroller inside the prosthesis hand for transradial user.

    METHODS: The system components and hand prototypes involve the anthropometry, CAD design and prototyping, biomechatronics engineering together with the prosthetics. The modeler construction of the system develop allows the ultrasonic sensors that are placed on the shoulder to generate the wrist movement of the prosthesis. The kinematics of wrist movement, which are the pronation/supination and flexion/extension were tested using the motion analysis and general motion of human hand were compared. The study also evaluated the require degree of detection for the input of the ultrasonic sensor to generate the wrist movements.

    RESULTS: The values collected by the vicon motion analysis for biomechatronics prosthesis system were reliable to do the common tasks in daily life. The degree of the head needed to bend to give the full input wave was about 45°-55° of rotation or about 14 cm-16 cm. The biomechatronics wrist prosthesis gave higher degree of rotation to do the daily tasks but did not achieve the maximum degree of rotation.

    CONCLUSION: The new development of using sensor and actuator in generating the wrist movements will be interesting for used list in medicine, robotics technology, rehabilitations, prosthetics and orthotics.

    Matched MeSH terms: Robotics/instrumentation*
  5. Yahaya MR, Hj Razali MH, Abu Bakar CA, Ismail WI, Muda WM, Mat N, et al.
    Pak J Biol Sci, 2014 Jan 01;17(1):141-5.
    PMID: 24783795
    This alkaloid automated removal machine was developed at Instrumentation Laboratory, Universiti Sultan Zainal Abidin Malaysia that purposely for removing the alkaloid toxicity from Dioscorea hispida (DH) tuber. It is a poisonous plant where scientific study has shown that its tubers contain toxic alkaloid constituents, dioscorine. The tubers can only be consumed after it poisonous is removed. In this experiment, the tubers are needed to blend as powder form before inserting into machine basket. The user is need to push the START button on machine controller for switching the water pump ON by then creating turbulence wave of water in machine tank. The water will stop automatically by triggering the outlet solenoid valve. The powders of tubers are washed for 10 minutes while 1 liter of contaminated water due toxin mixture is flowing out. At this time, the controller will automatically triggered inlet solenoid valve and the new water will flow in machine tank until achieve the desire level that which determined by ultra sonic sensor. This process will repeated for 7 h and the positive result is achieved and shows it significant according to the several parameters of biological character ofpH, temperature, dissolve oxygen, turbidity, conductivity and fish survival rate or time. From that parameter, it also shows the positive result which is near or same with control water and assuming was made that the toxin is fully removed when the pH of DH powder is near with control water. For control water, the pH is about 5.3 while water from this experiment process is 6.0 and before run the machine the pH of contaminated water is about 3.8 which are too acid. This automated machine can save time for removing toxicity from DH compared with a traditional method while less observation of the user.
    Matched MeSH terms: Robotics/instrumentation*
  6. Yakub F, Md Khudzari AZ, Mori Y
    Int J Rehabil Res, 2014 Mar;37(1):9-21.
    PMID: 24126254 DOI: 10.1097/MRR.0000000000000035
    This paper presents and studies various selected literature primarily from conference proceedings, journals and clinical tests of the robotic, mechatronics, neurology and biomedical engineering of rehabilitation robotic systems. The present paper focuses of three main categories: types of rehabilitation robots, key technologies with current issues and future challenges. Literature on fundamental research with some examples from commercialized robots and new robot development projects related to rehabilitation are introduced. Most of the commercialized robots presented in this paper are well known especially to robotics engineers and scholars in the robotic field, but are less known to humanities scholars. The field of rehabilitation robot research is expanding; in light of this, some of the current issues and future challenges in rehabilitation robot engineering are recalled, examined and clarified with future directions. This paper is concluded with some recommendations with respect to rehabilitation robots.
    Matched MeSH terms: Robotics/instrumentation
  7. Abdul Rahman H, Khor KX, Yeong CF, Su EL, Narayanan AL
    Biomed Mater Eng, 2017;28(2):105-116.
    PMID: 28372264 DOI: 10.3233/BME-171660
    BACKGROUND: Clinical scales such as Fugl-Meyer Assessment (FMA) and Motor Assessment Scale (MAS) are widely used to evaluate stroke patient's motor performance. However, there are several limitations with these assessment scales such as subjectivity, lack of repeatability, time-consuming and highly depend on the ability of the physiotherapy. In contrast, robot-based assessments are objective, repeatable, and could potentially reduce the assessment time. However, robot-based assessments are not as well established as conventional assessment scale and the correlation to conventional assessment scale is unclear.

    OBJECTIVE: This study was carried out to identify important parameters in designing tasks that efficiently assess hand function of stroke patients and to quantify potential benefits of robotic assessment modules to predict the conventional assessment score with iRest.

    METHODS: Twelve predictive variables were explored, relating to movement time, velocity, strategy, accuracy and smoothness from three robotic assessment modules which are Draw I, Draw Diamond and Draw Circle. Regression models using up to four predictors were developed to describe the MAS.

    RESULTS: Results show that the time given should be not too long and it would affect the trajectory error. Besides, result also shows that it is possible to use iRest in predicting MAS score.

    CONCLUSION: There is a potential of using iRest, a non-motorized device in predicting MAS score.

    Matched MeSH terms: Robotics/instrumentation*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links