Displaying all 5 publications

Abstract:
Sort:
  1. Ng CY, Wickneswari R, Choong CY
    Genet. Mol. Res., 2014;13(3):6037-49.
    PMID: 25117361 DOI: 10.4238/2014.August.7.18
    Calamus palustris Griff. is an economically important dioecious rattan species in Southeast Asia. However, dioecy and onset of flowering at 3-4 years old render uncertainties in desired female:male seedling ratios to establish a productive seed orchard for this rattan species. We constructed a subtractive library for male floral tissue to understand the genetic mechanism for gender determination in C. palustris. The subtractive library produced 1536 clones with 1419 clones of high quality. Reverse Northern screening showed 313 clones with differential expression, and sequence analyses clustered them into 205 unigenes, including 32 contigs and 173 singletons. The subtractive library was further validated with reverse transcription-quantitative polymerase chain reaction analysis. Homology identification classified the unigenes into 12 putative functional proteins with 83% unigenes showing significant match to proteins in databases. Functional annotations of these unigenes revealed genes involved in male flower development, including MADS-box genes, pollen-related genes, phytohormones for flower development, and male flower organ development. Our results showed that the male floral genes may play a vital role in sex determination in C. palustris. The identified genes can be exploited to understand the molecular basis of sex determination in C. palustris.
    Matched MeSH terms: Subtractive Hybridization Techniques*
  2. Sahebi M, Hanafi MM, Azizi P, Hakim A, Ashkani S, Abiri R
    Mol Biotechnol, 2015 Oct;57(10):880-903.
    PMID: 26271955 DOI: 10.1007/s12033-015-9884-z
    Suppression subtractive hybridization (SSH) is an effective method to identify different genes with different expression levels involved in a variety of biological processes. This method has often been used to study molecular mechanisms of plants in complex relationships with different pathogens and a variety of biotic stresses. Compared to other techniques used in gene expression profiling, SSH needs relatively smaller amounts of the initial materials, with lower costs, and fewer false positives present within the results. Extraction of total RNA from plant species rich in phenolic compounds, carbohydrates, and polysaccharides that easily bind to nucleic acids through cellular mechanisms is difficult and needs to be considered. Remarkable advancement has been achieved in the next-generation sequencing (NGS) field. As a result of progress within fields related to molecular chemistry and biology as well as specialized engineering, parallelization in the sequencing reaction has exceptionally enhanced the overall read number of generated sequences per run. Currently available sequencing platforms support an earlier unparalleled view directly into complex mixes associated with RNA in addition to DNA samples. NGS technology has demonstrated the ability to sequence DNA with remarkable swiftness, therefore allowing previously unthinkable scientific accomplishments along with novel biological purposes. However, the massive amounts of data generated by NGS impose a substantial challenge with regard to data safe-keeping and analysis. This review examines some simple but vital points involved in preparing the initial material for SSH and introduces this method as well as its associated applications to detect different novel genes from different plant species. This review evaluates general concepts, basic applications, plus the probable results of NGS technology in genomics, with unique mention of feasible potential tools as well as bioinformatics.
    Matched MeSH terms: Subtractive Hybridization Techniques/economics; Subtractive Hybridization Techniques/methods*
  3. Aktar-Uz-Zamana, Md., Tuhina-Khatun, Mst., Mohamed Hanafi Musa, Sahebi, Mahbod
    MyJurnal
    A resistant variety with high yielding potential is key for increasing crop production to
    fulfill the food requirement of the ever increasing world populations. Consequently, the aim of plant
    breeders is to develop high yielding varieties or cultivars that are resistant or tolerant to specific
    diseases or insects. For developing a resistant variety, it is enormously indispensable to incorporate or
    introgress the specific resistant genes of that particular disease into the recipient. Suppression
    subtractive hybridization (SSH) is a powerful technique for the identification of disease specific
    differentially expressed genes that are expressed in a resistant or susceptible variety. This paper
    presents a brief review on the SSH technique with examples focusing on the identification of the
    wheat disease specific differentially expressed genes and their defense mechanisms against fungal
    pathogens in global wheat cultivars. This review is helpful for wheat researchers for the updated
    information on the SSH technique for the identification of differentially expressed genes in the global
    wheat cultivars and varieties. Eventually, the identified genes could be used to develop the disease
    resistance variety through marker-assisted backcrossing programme or conventional breeding.
    Matched MeSH terms: Subtractive Hybridization Techniques
  4. Yong SF, Tan SH, Wee J, Tee JJ, Sansom FM, Newton HJ, et al.
    Front Microbiol, 2010;1:123.
    PMID: 21687766 DOI: 10.3389/fmicb.2010.00123
    The detection of Legionella pneumophila in environmental and clinical samples is frequently performed by PCR amplification of the mip and/or 16S rRNA genes. Combined with DNA sequencing, these two genetic loci can be used to distinguish different species of Legionella and identify L. pneumophila. However, the recent Legionella genome sequences have opened up hundreds of possibilities for the development of new molecular targets for detection and diagnosis. Ongoing comparative genomics has the potential to fine tune the identification of Legionella species and serogroups by combining specific and general genetic targets. For example, the coincident detection of LPS biosynthesis genes and virulence genes may allow the differentiation of both pathogen and serogroup without the need for nucleotide sequencing. We tested this idea using data derived from a previous genomic subtractive hybridization we performed between L. pneumophila serogroup 1 and L. micdadei. Although not yet formally tested, these targets serve as an example of how comparative genomics has the potential to improve the scope and accuracy of Legionella molecular detection if embraced by laboratories undertaking Legionella surveillance.
    Matched MeSH terms: Subtractive Hybridization Techniques
  5. Ngiow Shin Foong, Maha Abdullah, Jasmine Lim, Cheong Soon-Keng, Seow Heng-Fong
    MyJurnal
    Introduction: Current prognostic markers have improved survival prediction, however, it has not
    advanced treatment strategies. Gene expression profiling may identify biological markers suitable as
    therapeutic targets. Leukaemia stem cell is associated with adverse outcome, however, its biological
    characteristics are still being investigated. We observed higher in vitro cell viability in acute myeloid
    leukaemia (AML) samples with poor prognosis, which may be stem cell related. Objective: The
    objective of this study was to profile highly expressed genes in an AML sample of poor prognosis/high
    viability and compare with a sample of good prognosis/low viability. Method: Subtractive hybridization
    was performed on two AML samples with high blast counts (>80%), a poor prognosis, PP (disease free
    survival, DFS12 months) sample. The PP sample had
    higher CD34+ counts (73% vs 46%) and higher cell viability than the GP sample. cDNA libraries were
    subsequently cloned and sequenced. Results: cDNA subtracted from the PP samples was identified
    as genes active during fetal/embryonic development (LCOR, CNOT1, ORMDL1), HOX- related genes
    (HOXA3, PBX3, SF3B1), hematopoiesis (SELL, IL-3RA) and aerobic glycolysis/hypoxia (PGK1,
    HIGD1A) -associated genes. Majority of GP clones isolated contained genes involved in oxidative
    phosphorylation, OXPHOS (COXs, ATPs, MTND4 and MTRNR2), protein synthesis (including
    ribosomal proteins, initiating and elongation factors), chromatin remodeling (H2AFZ, PTMA), cell
    motility (MALAT1, CALM2, TMSB4X), and mitochondria (HSPA9, MPO) genes. Conclusion: Thus,
    the PP sample exhibited stem cell-like features while the GP sample showed cells at a high level of cell
    activity. These genes are potential prognostic markers and targets for therapy.
    Matched MeSH terms: Subtractive Hybridization Techniques
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links