Sulfanilic acid (4-aminobenzenesulfonic acid) is a sulfonated aromatic amine widely used in chemical industries for synthesis of various organic dyes and sulfa drugs. There are quite a few microbial co-cultures or single isolates capable of completely degrading this compound. Novosphingobium resinovorum SA1 was the first single bacterium which could utilize sulfanilic acid as its sole carbon, nitrogen and sulfur source. The strain has versatile catabolic routes for the bioconversion of numerous other aromatic compounds. Here, the complete genome sequence of the N. resinovorum SA1 strain is reported. The genome consists of a circular chromosome of 3.8 Mbp and four extrachromosomal elements between 67 and 1 759.8 kbp in size. Three alternative 3-ketoadipate pathways were identified on the plasmids. Sulfanilic acid is decomposed via a modified 3-ketoadipate pathway and the oxygenases involved form a phylogenetically separate branch on the tree. Sequence analysis of these elements might provide a genetic background for deeper insight into the versatile catabolic metabolism of various aromatic xenobiotics, including sulfanilic acid and its derivatives. Moreover, this is also a good model strain for understanding the role and evolution of multiple genetic elements within a single strain.
Genes involved in the 4-aminobenzenesulfonate (4-ABS) degradation pathway of Hydrogenophaga sp. PBC were identified using transposon mutagenesis. The screening of 10,000 mutants for incomplete 4-ABS biotransformation identified four mutants with single transposon insertion. Genes with insertions that impaired the ability to utilize 4-ABS for growth included (1) 4-sulfocatechol 1,2-dioxygenase β-subunit (pcaH2) and 3-sulfomuconate cycloisomerase involved in the modified β-ketoadipate pathway; (2) 4-aminobenzenesulfonate 3,4-dioxygenase component (sadA) involved in aromatic ring hydroxylation; and (3) transposase gene homolog with a putative cis-diol dehydrogenase gene located downstream. The pcaH2 mutant strain accumulated brown metabolite during growth on 4-ABS which was identified as 4-sulfocatechol through thin layer chromatography and HPLC analyses. Supplementation of wild-type sadA gene in trans restored the 4-ABS degradation ability of the sadA mutant, thus supporting the annotation of its disrupted gene.
The gene coding for the oxygenase component, sadA, of 4-aminobenzenesulfonate (4-ABS) 3,4-dioxygenase in Hydrogenophaga sp. PBC was previously identified via transposon mutagenesis. Expression of wild-type sadA in trans restored the ability of the sadA mutant to grow on 4-ABS. The inclusion of sadB and sadD, coding for a putative glutamine-synthetase-like protein and a plant-type ferredoxin, respectively, further improved the efficiency of 4-ABS degradation. Transcription analysis using the gfp promoter probe plasmid showed that sadABD was expressed during growth on 4-ABS and 4-sulfocatechol. Heterologous expression of sadABD in Escherichia coli led to the biotransformation of 4-ABS to a metabolite which shared a similar retention time and UV/vis profile with 4-sulfocatechol. The putative reductase gene sadC was isolated via degenerate PCR and expression of sadC and sadABD in E. coli led to maximal 4-ABS biotransformation. In E. coli, the deletion of sadB completely eliminated dioxygenase activity while the deletion of sadC or sadD led to a decrease in dioxygenase activity. Phylogenetic analysis of SadB showed that it is closely related to the glutamine-synthetase-like proteins involved in the aniline degradation pathway. This is the first discovery, to our knowledge, of the functional genetic components for 4-ABS aromatic ring hydroxylation in the bacterial domain.
Ralstonia sp. strain PBA was isolated from textile wastewater in a coculture with Hydrogenophaga sp. strain PBC. Here we present the assembly and annotation of its genome, which may provide further insights into the mechanism of its interaction with strain PBC during 4-aminobenzenesulfonate degradation.
Hydrogenophaga sp. strain PBC is an effective degrader of 4-aminobenzenesulfonate isolated from textile wastewater. Here we present the assembly and annotation of its genome, which may provide further insights into its metabolic potential. This is the first announcement of the draft genome sequence of a strain from the genus Hydrogenophaga.
A co-culture consisting of Hydrogenophaga sp. PBC and Ralstonia sp. PBA, isolated from textile wastewater treatment plant could tolerate up to 100 mM 4-aminobenzenesulfonate (4-ABS) and utilize it as sole carbon, nitrogen and sulfur source under aerobic condition. The biodegradation of 4-ABS resulted in the release of nitrogen and sulfur in the form of ammonium and sulfate respectively. Ninety-eight percent removal of chemical oxygen demand attributed to 20 mM of 4-ABS in cell-free supernatant could be achieved after 118 h. Effective biodegradation of 4-ABS occurred at pH ranging from 6 to 8. During batch culture with 4-ABS as sole carbon and nitrogen source, the ratio of strain PBA to PBC was dynamic and a critical concentration of strain PBA has to be reached in order to enable effective biodegradation of 4-ABS. Haldane inhibition model was used to fit the degradation rate at different initial concentrations and the parameters μ(max), K(s) and K(i) were determined to be 0.13 h⁻¹, 1.3 mM and 42 mM respectively. HPLC analyses revealed traced accumulation of 4-sulfocatechol and at least four unidentified metabolites during biodegradation. This is the first study to report on the characterization of 4-ABS-degrading bacterial consortium that was isolated from textile wastewater treatment plant.
Reactive dyes account for one of the major sources of dye wastes in textile effluent. In this study, decolorization of the monoazo dye, Acid Orange 7 (AO7) by the Enterococcus faecalis strain ZL that isolated from a palm oil mill effluent treatment plant has been investigated. Decolorization efficiency of azo dye is greatly affected by the types of nutrients and the size of inoculum used. In this work, one-factor-at-a-time (method and response surface methodology (RSM) was applied to optimize these operational factors and also to study the combined interaction between them. Analysis of AO7 decolorization was done using Fourier transform infrared (FTIR) spectroscopy, desorption study, UV-Vis spectral analysis, field emission scanning electron microscopy (FESEM), and high performance liquid chromatography (HPLC). The optimum condition via RSM for the color removal of AO7 was found to be as follows: yeast extract, 0.1% w/v, glycerol concentration of 0.1% v/v, and inoculum density of 2.5% v/v at initial dye concentration of 100 mg/L at 37 °C. Decolorization efficiency of 98% was achieved in only 5 h. The kinetic of AO7 decolorization was found to be first order with respect to dye concentration with a k value of 0.87/h. FTIR, desorption study, UV-Vis spectral analysis, FESEM, and HPLC findings indicated that the decolorization of AO7 was mainly due to the biosorption as well as biodegradation of the bacterial cells. In addition, HPLC analyses also showed the formation of sulfanilic acid as a possible degradation product of AO7 under facultative anaerobic condition. This study explored the ability of E. faecalis strain ZL in decolorizing AO7 by biosorption as well as biodegradation process.