Displaying all 10 publications

Abstract:
Sort:
  1. Li L, Menezes MP, Smith M, Forbes R, Züchner S, Burgess A, et al.
    Neuromuscul Disord, 2024 Apr;37:29-35.
    PMID: 38520993 DOI: 10.1016/j.nmd.2024.03.005
    5q-associated spinal muscular atrophy (SMA) is the most common autosomal recessive neurological disease. Depletion in functional SMN protein leads to dysfunction and irreversible degeneration of the motor neurons. Over 95 % of individuals with SMA have homozygous exon 7 deletions in the SMN1 gene. Most of the remaining 4-5 % are compound heterozygous for deletion and a disease-associated sequence variant in the non-deleted allele. Individuals with SMA due to bi-allelic SMN1 sequence variants have rarely been reported. Data regarding their clinical phenotype, disease progression, outcome and treatment response are sparse. This study describes six individuals from three families, all with homozygous sequence variants in SMN1, and four of whom received treatment with disease-modifying therapies. We also describe the challenges faced during the diagnostic process and intrafamilial phenotypic variability observed between siblings.
    Matched MeSH terms: Survival of Motor Neuron 1 Protein/genetics
  2. Sasongko TH, Gunadi, Zilfalil BA, Zabidi-Hussin Z
    J. Neurogenet., 2011 Mar;25(1-2):15-6.
    PMID: 21338334 DOI: 10.3109/01677063.2011.559561
    The authors suggest a simplification for the current molecular genetic testing of spinal muscular atrophy (SMA). Deletion analysis of SMN1 exon 7 alone may be necessary and sufficient for the diagnosis of SMA. It is based on sole contribution of survival motor neuron 1 (SMN1) exon 7 to SMA pathogenesis.
    Matched MeSH terms: Survival of Motor Neuron 1 Protein/genetics*
  3. Marini M, Sasongko TH, Watihayati MS, Atif AB, Hayati F, Gunadi, et al.
    Indian J Med Res, 2012;135:31-5.
    PMID: 22382180
    Genetic diagnosis of spinal muscular atrophy (SMA) is complicated by the presence of SMN2 gene as majority of SMA patients show absence or deletion of SMN1 gene. PCR may amplify both the genes non selectively in presence of high amount of DNA. We evaluated whether allele-specific PCR for diagnostic screening of SMA is reliable in the presence of high amount of genomic DNA, which is commonly used when performing diagnostic screening using restriction enzymes.
    Matched MeSH terms: Survival of Motor Neuron 1 Protein/blood*; Survival of Motor Neuron 1 Protein/genetics
  4. Gandhi G, Abdullah S, Foead AI, Yeo WWY
    J Neurol Sci, 2021 08 15;427:117485.
    PMID: 34015517 DOI: 10.1016/j.jns.2021.117485
    Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by low levels of full-length survival motor neuron (SMN) protein due to the loss of the survival motor neuron 1 (SMN1) gene and inefficient splicing of the survival motor neuron 2 (SMN2) gene, which mostly affects alpha motor neurons of the lower spinal cord. Despite the U.S. Food and Drug Administration (FDA) approved SMN-dependent therapies including Nusinersen, Zolgensma® and Evrysdi™, SMA is still a devastating disease as these existing expensive drugs may not be sufficient and thus, remains a need for additional therapies. The involvement of microRNAs (miRNAs) in SMA is expanding because miRNAs are important mediators of gene expression as each miRNA could target a number of genes. Hence, miRNA-based therapy could be utilized in treating this genetic disorder. However, the delivery of miRNAs into the target cells remains an obstacle in SMA, as there is no effective delivery system to date. This review highlights the potential strategies for intracellular miRNA delivery into target cells and current challenges in miRNA delivery. Furthermore, we provide the future prospects of miRNA-based therapeutic strategies in SMA.
    Matched MeSH terms: Survival of Motor Neuron 1 Protein
  5. Chong LC, Gandhi G, Lee JM, Yeo WWY, Choi SB
    Int J Mol Sci, 2021 Aug 20;22(16).
    PMID: 34445667 DOI: 10.3390/ijms22168962
    Spinal muscular atrophy (SMA), one of the leading inherited causes of child mortality, is a rare neuromuscular disease arising from loss-of-function mutations of the survival motor neuron 1 (SMN1) gene, which encodes the SMN protein. When lacking the SMN protein in neurons, patients suffer from muscle weakness and atrophy, and in the severe cases, respiratory failure and death. Several therapeutic approaches show promise with human testing and three medications have been approved by the U.S. Food and Drug Administration (FDA) to date. Despite the shown promise of these approved therapies, there are some crucial limitations, one of the most important being the cost. The FDA-approved drugs are high-priced and are shortlisted among the most expensive treatments in the world. The price is still far beyond affordable and may serve as a burden for patients. The blooming of the biomedical data and advancement of computational approaches have opened new possibilities for SMA therapeutic development. This article highlights the present status of computationally aided approaches, including in silico drug repurposing, network driven drug discovery as well as artificial intelligence (AI)-assisted drug discovery, and discusses the future prospects.
    Matched MeSH terms: Survival of Motor Neuron 1 Protein/metabolism
  6. Harahap NI, Takeuchi A, Yusoff S, Tominaga K, Okinaga T, Kitai Y, et al.
    Brain Dev, 2015 Aug;37(7):669-76.
    PMID: 25459970 DOI: 10.1016/j.braindev.2014.10.006
    More than 90% of spinal muscular atrophy (SMA) patients show homozygous deletion of SMN1 (survival motor neuron 1). They retain SMN2, a highly homologous gene to SMN1, which may partially compensate for deletion of SMN1. Although the promoter sequences of these two genes are almost identical, a GCC insertion polymorphism has been identified at c.-320_-321 in the SMN1 promoter. We have also found this insertion polymorphism in an SMN2 promoter in an SMA patient (Patient A) who has SMA type 2/3.
    Matched MeSH terms: Survival of Motor Neuron 1 Protein/genetics*
  7. Sasongko TH, Gunadi, Yusoff S, Atif AB, Fatemeh H, Rani A, et al.
    Brain Dev, 2010 May;32(5):385-9.
    PMID: 19664890 DOI: 10.1016/j.braindev.2009.06.008
    The majority of spinal muscular atrophy (SMA) patients showed homozygous deletion or other mutations of SMN1. However, the genetic etiology of a significant number of SMA patients has not been clarified. Recently, mutation in the gene underlying cat SMA, limb expression 1 (LIX1), has been reported. Similarity in clinical and pathological features of cat and human SMA may give an insight into possible similarity of the genetic etiology.
    Matched MeSH terms: Survival of Motor Neuron 1 Protein/genetics
  8. Zilfalil BA, Zabidi-Hussin AMH, Watihayati MS, Rozainah MY, Naing L, Sutomo R, et al.
    Med J Malaysia, 2004 Oct;59(4):512-4.
    PMID: 15779584 MyJurnal
    In Malaysia, Spinal Muscular Atrophy (SMA) is diagnosed based on clinical observation with or without muscle biopsy. Molecular analyses of the SMA-related genes have not been available so far. In this preliminary study, we searched for homozygous deletion of Survival Motor Neuron (SMN1) and Neuronal Apoptosis Inhibitory Protein (NAIP) genes in Malay patients with SMA and found homozygous deletion of SMN1 exon 7 and 8 in all the patients while homozygous deletion of NAIP exon 5 was detected in only our type 1 patients but not in the type 3 patient. To the best of our knowledge, these are the first SMA cases diagnosed at the molecular level in Malaysia.
    Matched MeSH terms: Survival of Motor Neuron 1 Protein
  9. Watihayati MS, M S W, Zabidi AM, A M H ZH, Tang TH, T H T, et al.
    Kobe J Med Sci, 2007;53(4):171-5.
    PMID: 17932457
    Spinal Muscular Atrophy (SMA) is an autosomal recessive disease, which is characterized by degeneration of the anterior horn cells of the spinal cord. SMA is classified into 3 clinical subtypes, type I (severe), type II (intermediate), and type III (mild). Two genes, SMN1 and NAIP, have been identified as SMA-related genes. The SMN1 gene is now recognized as a responsible gene for the disease because it is deleted or mutated in most SMA patients. However, the role of the NAIP gene in SMA has not been fully clarified. To clarify the contribution of NAIP to the disease severity of SMA, we studied the relationship between NAIP-deletion and clinical phenotype in Malaysian patients. A total of 39 patients lacking SMN1 (12 type I, 19 type II, and 8 type III patients) were enrolled into this study. Seven out of 12 patients with type I SMA (approximately 60%) showed NAIP deletion. On the contrary, only 2 out of 20 type II patients and none of type III patients showed NAIP deletion. There was a statistically significant difference in NAIP-deletion frequency among the clinical subtypes (Fisher's exact probability test, p value = 0.014). In conclusion, according to our data that NAIP deletion was more frequent in type I SMA than in type II-III SMA, the NAIP gene may be a modifying factor for disease severity of SMA.
    Matched MeSH terms: Survival of Motor Neuron 1 Protein
  10. Watihayati MS, Zabidi-Hussin AM, Tang TH, Matsuo M, Nishio H, Zilfalil BA
    Pediatr Int, 2007 Feb;49(1):11-4.
    PMID: 17250498
    The survival motor neuron 1 (SMN1) gene has been recognized to be responsible for spinal muscular atrophy (SMA) because it is homozygously deleted in more than 90% of SMA patients, irrespective of their clinical severity, whereas the neuronal apoptosis inhibitory protein (NAIP) gene is now considered to be a modifying factor of the severity of SMA. In Malaysia, it remains to be elucidated whether deletion of the SMN1 gene is also a main cause of SMA or whether deletion of the NAIP gene is found in the SMA patients.
    Matched MeSH terms: Survival of Motor Neuron 1 Protein
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links