Displaying all 11 publications

Abstract:
Sort:
  1. Dhaliwal JS, Balasubramaniam T, Quek CK, Arumainnathan S, Nasuruddin BA
    Ann Acad Med Singap, 1995 Nov;24(6):785-8.
    PMID: 8838981
    A cross-sectional study on the expression of 6 lymphocyte markers was carried out on 481 patients with human immunodeficiency virus (HIV) and 79 normals after stratification based on absolute CD4 counts. The data were stratified according to the following groups: (I) 1201 to 1600, (II) 801 to 1200, (III) 401 to 800 and (IV) 0 to 400 (x 10(6) CD4 cells per mm3). The mean percentages of the subsets before stratification showed that HIV patients had increased percentages of CD3+ (75.7 against 66.9), CD3+CD8+ (52.2 against 32.3) and CD3+HLA-DR+ (36.1 against 14.4) cells and lower percentages of CD19 (10.3 against 13.3) and natural killer cells (13.7 against 20.4) when compared to controls in the same group. A definite trend, however, was only seen in CD3+CD8+ (47.4, 50.0, 54.0, 57.5 for groups I, II, III and IV respectively) and CD3+HLA-DR+ (29.1, 32.9, 38.4, 43.9 for groups I, II, III and IV respectively).
    Matched MeSH terms: T-Lymphocytes/pathology; CD4-Positive T-Lymphocytes/pathology*; CD8-Positive T-Lymphocytes/pathology
  2. Yaacob NS, Kaderi MA, Norazmi MN
    J Clin Immunol, 2009 Sep;29(5):595-602.
    PMID: 19472040 DOI: 10.1007/s10875-009-9300-1
    BACKGROUND: The peroxisome proliferator-activated receptors (PPARs) have been implicated in immune regulation. We determined the transcriptional expression of the three isoforms, PPARalpha, PPARgamma1, and PPARgamma2 in the peritoneal macrophages, CD4- and CD8-positive lymphocytes in non-obese diabetic (NOD) mice at 5 and 10 weeks of age as well as at diabetic stage.

    RESULTS: Compared to the non-obese diabetic resistant (NOR) mice, the peritoneal macrophages of NOD mice expressed increased levels of PPARalpha but reduced levels of PPARgamma2, while PPARgamma1 expression was unchanged in all age groups. CD4-positive lymphocytes expressed low levels of PPARalpha in diabetic NOD mice and greatly reduced expression of PPARgamma2 in all age groups. Unlike peritoneal macrophages and CD4-positive cells, the CD8-positive cells expressed low levels of PPARgamma1 in diabetic NOD mice but no difference in PPARalpha and PPARgamma2 expression was observed compared to NOR mice.

    CONCLUSION: The current findings may suggest an important regulatory role of PPARs in the pathogenesis of autoimmune diabetes.

    Matched MeSH terms: CD4-Positive T-Lymphocytes/pathology; CD8-Positive T-Lymphocytes/pathology
  3. Soh JE, Abu N, Sagap I, Mazlan L, Yahaya A, Mustangin M, et al.
    Immunotherapy, 2019 10;11(14):1205-1219.
    PMID: 31478431 DOI: 10.2217/imt-2019-0073
    Colorectal cancer is the third commonest malignancy in Asia including Malaysia. The immunogenic cancer-testis antigens, which are expressed in a variety of cancers but with limited expression in normal tissues except the testis, represent an attractive approach to improve treatment options for colorectal cancer. We aimed to validate four PASD1 peptides as the immunotherapeutic targets in colorectal cancer. First, PASD1 mRNA and protein expression were determined via real-time polymerase chain reaction (RT-PCR) and immunohistochemistry. The PASD1 peptides specific to HLA-A*24:02 were investigated using IFN-y-ELISpot assay, followed by the cytolytic and granzyme-B-ELISpot assays to analyze the cytolytic effects of CD8+ T cells. Gene and protein expressions of PASD1 were detected in 20% and 17.3% of colorectal cancer samples, respectively. PASD1(4) peptide was shown to be immunogenic in colorectal cancer samples. CD8+ T cells raised against PASD1(4) peptide were able to lyze HLA-A*24:02+ PASD1+ cells. Our results reveal that PASD1(4) peptide represents a potential target for colorectal cancer.
    Matched MeSH terms: CD8-Positive T-Lymphocytes/pathology
  4. Yap E, Wan Jamaluddin WF, Tumian NR, Mashuri F, Mohammed F, Tan GC, et al.
    Malays J Pathol, 2014 Dec;36(3):201-5.
    PMID: 25500520 MyJurnal
    NK/T cell lymphoma, nasal type is an aggressive and uncommon malignancy. Disease that occurs outside of the aerodigestive tract exhibits an even more aggressive clinical behaviour and does not respond as well to conventional therapy compared to its nasal counterpart. We report such a case of NK/T cell lymphoma, nasal type, that presented as an anterior chest wall mass, arising from the left pectoralis muscle. An interesting feature we wish to highlight is the associated eosinophilia that corresponded to disease activity, exhibiting fluctuations with surgical resection and chemotherapy. To the best of our knowledge this is the third reported case of NK/T cell lymphoma that is associated with peripheral eosinophilia. Our case highlights the role of certain NK cell subsets that play a major role in eosinophilic activation in NK/T lymphomas and calls for more research into further classification of this disease by virtue of its NK cell subsets.
    Matched MeSH terms: T-Lymphocytes/pathology*
  5. Peh SC, Kim LH, Poppema S
    Am. J. Surg. Pathol., 2001 Jul;25(7):925-9.
    PMID: 11420464
    Thymus and activation-regulated chemokine (TARC) has been identified as a lymphocyte-directed CC chemokine that attracts activated T-helper type 2 (Th2) cells in humans. Recent studies showed that the T cells surrounding Reed-Sternberg cells in Hodgkin's lymphomas (HL) are Th2 type. Anaplastic large cell lymphomas (ALCL), T-cell-rich B-cell lymphoma (TCRBCL) can mimic HL in some instances. This study aimed to establish the pattern of TARC expression in these diseases. Immunohistochemical stain using a polyclonal goat anti-human antibody to TARC was performed on 119 cases of confirmed HL; 99 were classical type (43 mixed cellularity, 43 nodular sclerosis, 5 lymphocyte depleted, 4 lymphocyte rich, 4 unclassifiable) and 20 lymphocyte predominant HL. Additional 27 ALCL (9 T-, 18 null-cell phenotype), 16 T-cell and 8 B-cell non-Hodgkin's lymphoma (NHL) were studied. A total of 85.8% of the classical HL, one case of ALCL, and one case of large cell B-cell lymphoma with anaplastic morphology showed positive TARC expression in the tumor cells. The expression was paranuclear and/or diffuse in the cell cytoplasm. The tumor cells in all cases of lymphocyte predominant HL, TCRBCL, null ALCL, and T-NHL did not express TARC. The high frequency of TARC expression in the Reed-Sternberg cells of classical HL may explain the characteristic T-cell infiltrate in this disease. The absence in other types that may be morphologically similar indicates that staining for TARC may aid in differential diagnosis.
    Matched MeSH terms: T-Lymphocytes/pathology*
  6. Hasenan N, Mohd Isa SA, Hussain FA
    Asian Pac J Cancer Prev, 2021 Dec 01;22(12):4011-4016.
    PMID: 34967583 DOI: 10.31557/APJCP.2021.22.12.4011
    BACKGROUND: c-Myc has become significantly involved in aggressive B-cell non Hodgkin lymphoma (NHL), but little is known about its importance in T and NK cell NHL (TNKcNHLs) in association with prognostic factors. The study is to investigate the significance of c-Myc expression with clinicopathological features of TNKcNHLs patients.

    METHODOLOGY: A cross-sectional study of 32 archived tissue blocks of TNKcNHLs were immunohistochemically stained with c-Myc. The results were microscopically evaluated and statistically analysed to examine the association between the clinicopathological data with the c-Myc expression.

    RESULTS: c-Myc protein expressions were detected in 25/32 (78.1%) cases. The median age was 38-years.  Malay ethnicity (92.0%) with 21 males and 11 females. c-Myc expressions were seen in T lymphoblastic lymphoma (20%), ALK-positive ALCL (16%) ,PTCL,NOS (16%), extra nodal NK/T-cell lymphoma, nasal type (12%), extra-nodal involvement (78.1%), elevated serum LDH (83.3%) and high ECOG performance status (82.4%). However, no statistical significant of c-Myc in association with the clinicopathological parameters (p > 0.05).

    CONCLUSION: There was no statistically significant association of clinicopathological parameters and histological subtypes of TNKcNHLs contributed by small samples tested. However, the attribution of c-Myc in this disease should be further explored.

    Matched MeSH terms: T-Lymphocytes/pathology
  7. Abas FS, Shana'ah A, Christian B, Hasserjian R, Louissaint A, Pennell M, et al.
    Cytometry A, 2017 06;91(6):609-621.
    PMID: 28110507 DOI: 10.1002/cyto.a.23049
    The advance of high resolution digital scans of pathology slides allowed development of computer based image analysis algorithms that may help pathologists in IHC stains quantification. While very promising, these methods require further refinement before they are implemented in routine clinical setting. Particularly critical is to evaluate algorithm performance in a setting similar to current clinical practice. In this article, we present a pilot study that evaluates the use of a computerized cell quantification method in the clinical estimation of CD3 positive (CD3+) T cells in follicular lymphoma (FL). Our goal is to demonstrate the degree to which computerized quantification is comparable to the practice of estimation by a panel of expert pathologists. The computerized quantification method uses entropy based histogram thresholding to separate brown (CD3+) and blue (CD3-) regions after a color space transformation. A panel of four board-certified hematopathologists evaluated a database of 20 FL images using two different reading methods: visual estimation and manual marking of each CD3+ cell in the images. These image data and the readings provided a reference standard and the range of variability among readers. Sensitivity and specificity measures of the computer's segmentation of CD3+ and CD- T cell are recorded. For all four pathologists, mean sensitivity and specificity measures are 90.97 and 88.38%, respectively. The computerized quantification method agrees more with the manual cell marking as compared to the visual estimations. Statistical comparison between the computerized quantification method and the pathologist readings demonstrated good agreement with correlation coefficient values of 0.81 and 0.96 in terms of Lin's concordance correlation and Spearman's correlation coefficient, respectively. These values are higher than most of those calculated among the pathologists. In the future, the computerized quantification method may be used to investigate the relationship between the overall architectural pattern (i.e., interfollicular vs. follicular) and outcome measures (e.g., overall survival, and time to treatment). © 2017 International Society for Advancement of Cytometry.
    Matched MeSH terms: T-Lymphocytes/pathology*
  8. Engelhardt KR, Gertz ME, Keles S, Schäffer AA, Sigmund EC, Glocker C, et al.
    J Allergy Clin Immunol, 2015 Aug;136(2):402-12.
    PMID: 25724123 DOI: 10.1016/j.jaci.2014.12.1945
    BACKGROUND: Mutations in dedicator of cytokinesis 8 (DOCK8) cause a combined immunodeficiency (CID) also classified as autosomal recessive (AR) hyper-IgE syndrome (HIES). Recognizing patients with CID/HIES is of clinical importance because of the difference in prognosis and management.

    OBJECTIVES: We sought to define the clinical features that distinguish DOCK8 deficiency from other forms of HIES and CIDs, study the mutational spectrum of DOCK8 deficiency, and report on the frequency of specific clinical findings.

    METHODS: Eighty-two patients from 60 families with CID and the phenotype of AR-HIES with (64 patients) and without (18 patients) DOCK8 mutations were studied. Support vector machines were used to compare clinical data from 35 patients with DOCK8 deficiency with those from 10 patients with AR-HIES without a DOCK8 mutation and 64 patients with signal transducer and activator of transcription 3 (STAT3) mutations.

    RESULTS: DOCK8-deficient patients had median IgE levels of 5201 IU, high eosinophil levels of usually at least 800/μL (92% of patients), and low IgM levels (62%). About 20% of patients were lymphopenic, mainly because of low CD4(+) and CD8(+) T-cell counts. Fewer than half of the patients tested produced normal specific antibody responses to recall antigens. Bacterial (84%), viral (78%), and fungal (70%) infections were frequently observed. Skin abscesses (60%) and allergies (73%) were common clinical problems. In contrast to STAT3 deficiency, there were few pneumatoceles, bone fractures, and teething problems. Mortality was high (34%). A combination of 5 clinical features was helpful in distinguishing patients with DOCK8 mutations from those with STAT3 mutations.

    CONCLUSIONS: DOCK8 deficiency is likely in patients with severe viral infections, allergies, and/or low IgM levels who have a diagnosis of HIES plus hypereosinophilia and upper respiratory tract infections in the absence of parenchymal lung abnormalities, retained primary teeth, and minimal trauma fractures.

    Matched MeSH terms: CD4-Positive T-Lymphocytes/pathology; CD8-Positive T-Lymphocytes/pathology
  9. Saeidi A, Chong YK, Yong YK, Tan HY, Barathan M, Rajarajeswaran J, et al.
    Cell Immunol, 2015 Sep;297(1):19-32.
    PMID: 26071876 DOI: 10.1016/j.cellimm.2015.05.005
    The role of T-cell immunosenescence and functional CD8(+) T-cell responses in HIV/TB co-infection is unclear. We examined and correlated surrogate markers of HIV disease progression with immune activation, immunosenescence and differentiation using T-cell pools of HIV/TB co-infected, HIV-infected and healthy controls. Our investigations showed increased plasma viremia and reduced CD4/CD8 T-cell ratio in HIV/TB co-infected subjects relative to HIV-infected, and also a closer association with changes in the expression of CD38, a cyclic ADP ribose hydrolase and CD57, which were consistently expressed on late-senescent CD8(+) T cells. Up-regulation of CD57 and CD38 were directly proportional to lack of co-stimulatory markers on CD8(+) T cells, besides diminished expression of CD127 (IL-7Rα) on CD57(+)CD4(+) T cells. Notably, intracellular IFN-γ, perforin and granzyme B levels in HIV-specific CD8(+) T cells of HIV/TB co-infected subjects were diminished. Intracellular CD57 levels in HIV gag p24-specific CD8(+) T cells were significantly increased in HIV/TB co-infection. We suggest that HIV-TB co-infection contributes to senescence associated with chronic immune activation, which could be due to functional insufficiency of CD8(+) T cells.
    Matched MeSH terms: CD8-Positive T-Lymphocytes/pathology
  10. Chan KK, Wong RS, Mohamed SM, Ibrahim TA, Abdullah M, Nadarajah VD
    PMID: 22591286
    Bacillus thuringiensis (Bt) parasporal proteins with selective anticancer activity have recently garnered interest. This study determines the efficacy and mode of cell death of Bt 18 parasporal proteins against 3 leukemic cell lines (CEM-SS, CCRF-SB and CCRF-HSB-2).Cell-based biochemical analysis aimed to determine cell viability and the percentage of apoptotic cell death in treated cell lines; ultrastructural analysis to study apoptotic changes and Western blot to identify the parasporal proteins' binding site were performed. Bt 18 parasporal proteins moderately decreased viability of leukemic cells but not that of normal human T lymphocytes. Further purification of the proteins showed changes in inhibition selectivity. Phosphatidylserine externalization, active caspase-3, cell cycle, and ultrastructural analysis confirmed apoptotic activity and S-phase cell-cycle arrest. Western blot analysis demonstrated glyceraldehyde 3-phosphate dehydrogenase as a binding protein. We suggest that Bt 18 parasporal proteins inhibit leukemic cell viability by cell-cycle arrest and apoptosis and that glyceraldehyde 3-phosphate dehydrogenase binding initiates apoptosis.
    Matched MeSH terms: T-Lymphocytes/pathology
  11. Tai YC, Peh SC
    Singapore Med J, 2003 May;44(5):250-5.
    PMID: 13677361
    T- and B-lymphocytes are involved in recognition of foreign antigen by the specificity of their surface T-cell receptor and immunoglobulin, generated by gene rearrangement. Each T- and B-lymphocyte carries unique rearranged TCR or immunoglobulin gene, which has been applied to detect clonal from non-clonal T- and B-cell proliferation.
    Matched MeSH terms: T-Lymphocytes/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links