Modern linear accelerators, the predominant teletherapy machine in major radiotherapy centres worldwide, provide multiple electron and photon beam energies. To obtain reasonable treatment times, intense electron beam currents are achievable. In association with this capability, there is considerable demand to validate patient dose using systems of dosimetry offering characteristics that include good spatial resolution, high precision and accuracy. Present interest is in the thermoluminescence response and dosimetric utility of commercially available doped optical fibres. The important parameter for obtaining the highest TL yield during this study is to know the dopant concentration of the SiO2 fibre because during the production of the optical fibres, the dopants tend to diffuse. To achieve this aim, proton-induced X-ray emission (PIXE), which has no depth resolution but can unambiguously identify elements and analyse for trace elements with detection limits approaching microg/g, was used. For Al-doped fibres, the dopant concentration in the range 0.98-2.93 mol% have been estimated, with equivalent range for Ge-doped fibres being 0.53-0.71 mol%. In making central-axis irradiation measurements a solid water phantom was used. For 6-MV photons and electron energies in the range 6, 9 and 12 MeV, a source to surface distance of 100 cm was used, with a dose rate of 400 cGy/min for photons and electrons. The TL measurements show a linear dose-response over the delivered range of absorbed dose from 1 to 4 Gy. Fading was found to be minimal, less than 10% over five days subsequent to irradiation. The minimum detectable dose for 6-MV photons was found to be 4, 30 and 900 microGy for TLD-100 chips, Ge- and Al-doped fibres, respectively. For 6-, 9- and 12-MeV electron energies, the minimum detectable dose were in the range 3-5, 30-50 and 800-1400 microGy for TLD-100 chip, Ge-doped and Al-doped fibres, respectively.
Study has been made of the thermoluminescence (TL) yield of various glass-based commercial kitchenware (Reko-China, Skoja-France, Godis-China, Glass Tum-Malaysia, Lodrat-France). Interest focuses on their potential for retrospective dosimetry. Use was made of a60Co gamma-ray irradiator, delivering doses in the range 2-10 Gy. Results for the various media show all the glassware brands to yield linearity of response against dose, with a lower limit of detection of ∼0.06 and ∼0.08 Gy for loose and compact powdered samples. Among all of the brands under study, the Lodrat glassware provides the greatest sensitivity, at 6.0 E+02 nC g-1 Gy-1 and 1.5E+03 nC g-1 Gy-1 for compact- and loose-powdered forms respectively. This is sufficiently sensitive to allow its use as a TL material for accident dosimetry (2 Gy being the threshold dose for the onset of a number of deterministic biological effects, including skin erythema and sterility). Energy Dispersive X-ray (EDX) analyses have been conducted, showing the presence of a number of impurities (including C, O, Na, Mg, Al, Si, Ca and Br). Fading of the irradiated glasses show the amount of better than 3% and 5% of the stored energy for both loose and compact powdered samples within 9 days post irradiation. As such, commercial kitchenware glass has the potential to act as relatively good TL material for gamma radiation dosimetry at accident levels. This is the first endeavour reporting the TL properties of low cost commercial kitchenware glasses for gamma-ray doses in the few Gy range, literature existing for doses from 8 Gy to 200 Gy.
This work explores the thermoluminescence (TL) and photoluminescence (PL) properties of Ag/Y co-doped zinc oxide (ZnO) nanophosphor. The proposed dosimeter was prepared by the coprecipitation method and sintered at temperatures from 400°C to 1000°C in an air atmosphere. Raman spectroscopy was studied to investigate the structural features of this composition. The new proposed dosimeter revealed two peaks at 150°C and 175°C with a small shoulder at high temperature (225°C). The PL spectrum showed strong green emissions between 500 to 550 nm. The Raman spectrum showed many bands related to the interaction between ZnO, silver (Ag), and yttrium oxide (Y2 O3 ). The rising sintering temperature enhanced the TL glow curve intensity. The Ag/Y co-doped ZnO nanophosphor showed an excellent linearity index within a dose from 1 to 4 Gy. The minimum detectable dose (MDD) of the Ag/Y co-doped ZnO nanopowder (pellets) equaled 0.518 mGy. The main TL properties were achieved in this work as follows: thermal fading (37% after 45 days at 1 and 4 Gy), optical fading (53% after 1 h and 68% after 6 h by exposure to sunlight), effective atomic number (27.6), and energy response (flat behavior from 0.1 to 1.3 MeV). Finally, the proposed material shows promising results nominated to be used for radiation measurements.
We have investigated the thermoluminescent response and fading characteristics of germanium- and aluminium-doped SiO(2) optical fibres. These optical fibres were placed in a solid phantom and irradiated using 6 and 10 MV photon beams at doses ranging from 0.02 to 0.24 Gy delivered using a linear accelerator. In fading studies, the TL measurements were continued up to 14 days post-irradation. We have investigated the linearity of TL response as a function of dose for Ge-, Al-doped optical fibre and TLD-100 obtained for 6 and 10 MV photon irradiations. We have concentrated on doses that represent a small fraction of that delivered to the tumour to establish sensitivity of measurement for peripheral exposures in external beam radiotherapy.
Ion beams are used in radiotherapy to deliver a more precise dose to the target volume while minimizing dose to the surrounding healthy tissue. For optimum dose monitoring in ion-beam therapy, it is essential to be able to measure the delivered dose with a sensitivity, spatial resolution and dynamic range that is sufficient to meet the demands of the various therapy situations. Optical fibres have been demonstrated by this group to show promising thermoluminescence properties with respect to photon, electron and proton irradiation. In particular, and also given the flexibility and small size of optical fibre cores, for example 125.0+/-0.1 microm for the Al- and Ge-doped fibres used in this study, these fibres have the potential to fulfill the above requirements. This study investigates the thermoluminescence dosimetric characteristics of variously doped SiO(2) optical fibres irradiated with alpha particles from (241)Am. Following subtraction of the gamma contribution from the above source, the thermoluminescence characteristics of variously doped SiO(2) optical fibres have been compared with that of TLD-100 rods. The irradiations were performed in a bell jar. Of related potential significance is the effective atomic number, Z(eff) of the fibre, modifying measured dose from that deposited in tissues; in the present work, a scanning electron microscope and associated energy dispersive X-ray spectroscopy facility have been used to provide evaluation of Z(eff). For Ge-doped fibres, the effective atomic numbers value was 11.4, the equivalent value for Al-doped fibres was 12.3. This paper further presents results on dose response and the glow curves obtained. The results obtained indicate there to be good potential for use of variously doped SiO(2) optical fibres in measuring ion-beam doses in radiotherapeutic applications.
Study has been made of the thermoluminescence yield of various novel tailor-made silica fibres, 6 and 8 mol % Ge-doped, with four differing outer dimensions, comprised of flat and cylindrical shapes, subjected to electron irradiation. Main thermoluminescence dosimetric characteristics have been investigated, including the glow curve, dose response, energy dependence, minimum detectable dose, effective atomic number, linearity of index and sensitivity of the fibres. The studies have also established the uncertainties involved as well as the stability of response in terms of fading effect, reproducibility and annealing. In addition, dose-rate dependence was accounted for as this has the potential to be a significant factor in radiotherapy applications. The 6 and 8 mol % fibres have been found to provide highly linear dose response within the range 1 to 4 Gy, the smallest size flat fibre, 6 mol% Ge-doped, showing the greatest response by a factor of 1.1 with respect to the highly popular LiF phosphor-based medium TLD100. All of the fibres also showed excellent reproducibility with a standard deviation of < 2% and < 4% for 6 and 8 mol % Ge-doped fibres respectively. For fading evaluation, the smallest 6 mol% Ge-doped dimension flat fibre, i.e., 85 × 270 μm displayed the lowest signal loss within 120 days post-irradiation, at around 26.9% also showing a response superior to that of all of the other fibres. Moreover, all the fibres and TLD-100 chips showed independence with respect to electron irradiation energy and dose-rate. Compared with the 8 mol% Ge-doped optical fibres, the 6 mol% Ge-doped flat optical fibres have been demonstrated to possess more desirable performance features for passive dosimetry, serving as a suitable alternative to TLD-100 for medical irradiation treatment applications.
We describe two example pilot efforts to help define new thermoluminescent dosimeter media. The first concerns ZnS:Mn nanophosphors, prepared by chemical precipitation using zinc and sodium sulfate, doped with manganese sulfate at concentrations varying from 1 to 3mol. The second concerns chemical vapor deposited diamond, produced as a thin film or as amorphous carbon on a single-crystal silicon substrate, each deposited under the same conditions, use being made of the hot filament-chemical vapor deposition (HFCVD) technique. The gas concentrations used were 1% CH4 in 99% H2 and 25% CH4 in 75% H2. Characterization of formations used FESEM, XRD and EDX. The nanophosphors consisted of particles of sizes in the range 85-150nm, the thermoluminescence (TL)-based radiation detection medium giving rise to a single peaked glow curve of maximum yield at a temperature of 250°C at a heating rate of 5°C/s. The TL response increased linearly with radiation dose, ZnS doped to 2mol of Mn being found the most sensitive. Regarding chemical vapor deposited (CVD) carbon, inappreciable TL was found for the resultant ball-like amorphous carbon films, graphite, and the silicon substrate, whereas CVD diamond films showed a promising degree of linearity with dose. For both the ZnS and diamond samples, TL signal fading was appreciable, being some 40% per day for ZnS and>50% per day for CVD films even under storage in the dark at room temperature, making it apparent that there is need to adjust parameters such as the size of nanoparticles.
New glasses Li2CO3-K2CO3-H3BO3 (LKB) co-doped with CuO and MgO, or with TiO2 and MgO, were synthesized by the chemical quenching technique. The thermoluminescence (TL) responses of LKB:Cu,Mg and LKB:Ti,Mg irradiated with 6 MV photons or 6 MeV electrons were compared in the dose range 0.5-4.0 Gy. The standard commercial dosimeter LiF:Mg,Ti (TLD-100) was used to calibrate the TL reader and as a reference in comparison of the TL properties of the new materials. The dependence of the responses of the new materials on (60)Co dose is linear in the range of 1-1000 Gy. The TL yields of both of the co-doped glasses and TLD-100 are greater for electron irradiation than for photon irradiation. The TL sensitivity of LKB:Ti,Mg is 1.3 times higher than the sensitivity of LKB:Cu,Mg and 12 times less than the sensitivity of TLD-100. The new TL dosimetric materials have low effective atomic numbers, good linearity of the dose responses, excellent signal reproducibility, and a simple glow curve structure. This combination of properties makes them suitable for radiation dosimetry.
This paper describes a preliminary study of the thermoluminescence (TL) response of doped SiO(2) optical fibres subjected to (241)AmBe neutron irradiation. The TL materials, which comprise Al- and Ge-doped silica fibres, were exposed in close contact with the (241)AmBe source to obtain fast neutron interactions through use of measurements obtained with and without a Cd filter (the filter being made to entirely enclose the fibres). The neutron irradiations were performed for exposure times of 1-, 2-, 3-, 5- and 7-days in a neutron tank filled with water. In this study, use was also made of the Monte Carlo N-particle (MCNP) code version 5 (V5) to simulate the neutron irradiations experiment. It was found that the commercially available Ge-doped and Al-doped optical fibres show a linear dose response subjected to fast neutrons from (241)AmBe source up to seven days of irradiations. The simulation performed using MCNP5 also exhibits a similar pattern, albeit differing in sensitivity. The TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre, the total absorption cross section for Ge in both the fast and thermal neutrons region being some ten times greater than that of Al.
The thermoluminescent properties of boric glass modified with lithium and potassium carbonates (LKB) and co-doped with CuO and MgO are reported for the first time. Two techniques are applied to investigate the effect of dopants and co-dopants on the thermal stimulation properties of LKB. The induced TL glow curves of a CuO-doped sample are found to be at 220°C with a single peak. An enhancement of about three times is shown with the increment of 0.1 mol % MgO as a co-dopant impurity. This enhancement may contribute to the ability of magnesium to create extra electron traps and consequently the energy transfer to monovalent Cu(+) ions. LKB:Cu,Mg is low Z material (Zeff=8.55), and observed 15 times less sensitive than LiF: Mg, Ti (TLD-100). The proposed dosemeter showed good linearity in TL dose-response, low fading and excellent reproducibility with a simple glow curve, and thus, can be used in the radiation dosimetry.
This is a study using LiF:Mg;Ti thermoluminescent dosimeter (TLD) rods in phantoms to investigate the effect of lack of backscatter on exit dose. Comparing the measured dose with anticipated dose calculated using tissue maximum ratio (TMR) or percentage depth dose (PDD) gives rise to a correction factor. This correction factor may be applied to in-vivo dosimetry results to derive true dose to a point within the patient. Measurements in a specially designed humanoid breast phantom as well as patients undergoing radiotherapy treatment were also been done. TLDs with reproducibility of within +/- 3% (1 SD) are irradiated in a series of measurements for 6 and 10 MV photon beams from a medical linear accelerator. The measured exit doses for the different phantom thickness for 6 MV beams are found to be lowered by 10.9 to 14.0% compared to the dose derived from theoretical estimation (normalized dose at dmax). The same measurements for 10 MV beams are lowered by 9.0 to 13.5%. The variations of measured exit dose for different field sizes are found to be within 2.5%. The exit doses with added backscatter material from 2 mm up to 15 cm, shows gradual increase and the saturated values agreed within 1.5% with the expected results for both beams. The measured exit doses in humanoid breast phantom as well as in the clinical trial on patients undergoing radiotherapy also agreed with the predicted results based on phantom measurements. The authors' viewpoint is that this technique provides sufficient information to design exit surface bolus to restore build down effect in cases where part of the exit surface is being considered as a target volume. It indicates that the technique could be translated for in vivo dose measurements, which may be a conspicuous step of quality assurance in clinical practice.
Long exposure to radiation from fluoroscopy-guided interventions (FGIs) can be detrimental to both patients and radiologists. The effective doses received by the interventional radiology staff after performing 230 FGIs in a year were assessed by using double dosimetry and five various algorithms. The Shapiro-Wilk test revealed normally-distributed data (p < 0.01), while the significant correlation coefficients between the effective doses ranged between 0.88 and 1.00. As for the Bland-Altman analysis, both Niklason and Boetticher algorithms strongly supported the absence of statistical significance between the estimated effective doses. This portrays that the occupational doses received by the interventional radiology staff during FGIs fall within the acceptable limit regardless of the varied algorithms applied. In short, the Niklason and Boetticher algorithms appeared to be the more interchangeable ones for effective evaluation of doses. This is in view of their strong mutual correlations and excellent agreement.
Verification of tumor dose for patients undergoing external beam radiotherapy is an important part of quality assurance programs in radiation oncology. Among the various methods available, entrance dose in vivo is one reliable method used to verify the tumor dose delivered to a patient. In this work, entrance dose measurements using LiF:Mg;Ti and LiF:Mg;Cu;P thermoluminescent dosimeters (TLDs) without buildup cap was carried out. The TLDs were calibrated at the surface of a water equivalent phantom against the maximum dose, using 6- and 10-MV photon and 9-MeV electron beams. The calibration geometry was such that the TLDs were placed on the surface of the "solid-water" phantom and a calibrated ionization chamber was positioned inside the phantom at calibration depth. The calibrated TLDs were then utilized to measure the entrance dose during the treatment of actual patients. Measurements were also carried out in the same phantom simultaneously to check the stability of the system. The dose measured in the phantom using the TLDs calibrated for entrance dose to 6-and 10-MV photon beams was found to be close to the dose determined by the treatment planning system (TPS) with discrepancies of not more than 4.1% (mean 1.3%). Consequently, the measured entrance dose during dose delivery to the actual patients with a prescribed geometry was found to be compatible with a maximum discrepancy of 5.7% (mean 2.2%) when comparison was made with the dose determined by the TPS. Likewise, the measured entrance dose for electron beams in the phantom and in actual patients using the calibrated TLDs were also found to be close, with maximum discrepancies of 3.2% (mean 2.0%) and 4.8% (mean 2.3%), respectively. Careful implementation of this technique provides vital information with an ability to confidently accept treatment algorithms derived by the TPS or to re-evaluate the parameters when necessary.
Ge-doped silica fibre (GDSF) thermoluminescence dosimeters (TLD) are non-hygroscopic spatially high-resolution radiation sensors with demonstrated potential for radiotherapy dosimetry applications. The INTRABEAM® system with spherical applicators, one of a number of recent electronic brachytherapy sources designed for intraoperative radiotherapy (IORT), presents a representative challenging dosimetry situation, with a low keV photon beam and a desired rapid dose-rate fall-off close-up to the applicator surface. In this study, using the INTRABEAM® system, investigations were made into the potential application of GDSF TLDs for in vivo IORT dosimetry. The GDSFs were calibrated over the respective dose- and depth-range 1 to 20 Gy and 3 to 45 mm from the x-ray probe. The effect of different sizes of spherical applicator on TL response of the fibres was also investigated. The results show the GDSF TLDs to be applicable for IORT dose assessment, with the important incorporated correction for beam quality effects using different spherical applicator sizes. The total uncertainty in use of this type of GDSF for dosimetry has been found to range between 9.5% to 12.4%. Subsequent in vivo measurement of skin dose for three breast patients undergoing IORT were performed, the measured doses being below the tolerance level for acute radiation toxicity.
Present research concerns the TL signal stored in chalk of the variety commercially available for writing on blackboards. Samples of this have been subjected to x-ray irradiation, the key dosimetric parameters investigated including dose and energy response, sensitivity, fading and glow curve analysis. Three types of chalk have been investigated, each in five different colours. The samples were annealed at 323 K prior to irradiation. For all three chalk types and all five colours, the dose response has been found linear over the investigated dose range, 0-9 Gy. Regardless of type or colour, photoelectric energy dependency is apparent at the low energy end down to the lowest investigated accelerating potential of 30 kV. Crayola (Yellow) has shown the greatest TL sensitivity, thus selection has been made to limit further analysis to this medium alone, specifically in respect of glow curve and fading study. In addition, elemental compositional and structural change characterizations were made for the same medium, utilizing Energy Dispersive X-Ray (EDX) and Raman spectroscopy, respectively.
Brachytherapy is commonly used in treatment of cervical, prostate, breast and skin cancers, also for oral cancers, typically via the application of sealed radioactive sources that are inserted within or alongside the area to be treated. A particular aim of the various brachytherapy techniques is to accurately transfer to the targeted tumour the largest possible dose, at the same time minimizing dose to the surrounding normal tissue, including organs at risk. The dose fall-off with distance from the sources is steep, the dose gradient representing a prime factor in determining the dose distribution, also representing a challenge to the conduct of measurements around sources. Amorphous borosilicate glass (B2O3) in the form of microscope cover slips is recognized to offer a practicable system for such thermoluminescence dosimetry (TLD), providing for high-spatial resolution (down to
In the modern clinical practice of diagnostic radiology there is a growing demand for radiation dosimetry, it also being recognized that with increasing use of X-ray examinations additional population dose will result, accompanied by an additional albeit low potential for genetic consequences. At the doses typical of diagnostic radiology there is also a low statistical risk for cancer induction; in adhering to best practice, to be also implied is a low but non-negligible potential for deterministic sensitive organ responses, including in regard to the skin and eyes. Risk reduction is important, in line with the principle of ALARP, both in regard to staff and patients alike; for the latter modern practice is usually guided by Dose Reference Levels (DRL) while for the former and members of the public, legislated controls (supported by safe working practices) pertain. As such, effective, reliable and accurate means of dosimetry are required in support of these actions. Recent studies have shown that Ge-doped-silica glass fibres offer several advantages over the well-established phosphor-based TL dosimeters (TLD), including excellent sensitivity at diagnostic doses as demonstrated herein, low fading, good reproducibility and re-usability, as well as representing a water impervious, robust dosimetric system. In addition, these silica-based fibres show good linearity over a wide dynamic range of dose and dose-rate and are directionally independent. In the present study, we investigate tailor made doped-silica glass thermoluminescence (TL) for applications in medical diagnostic imaging dosimetry. The aim is to develop a dosimeter of sensitivity greater than that of the commonly used LiF (Mg,Ti) phosphor. We examine the ability of such doped glass media to detect the typically low levels of radiation in diagnostic applications (from fractions of a mGy through to several mGy or more), including, mammography and dental radiology, use being made of x-ray tubes located at the Royal Surrey County Hospital. We further examine dose-linearity, energy response and fading.
Graphite ion chambers and semiconductor diode detectors have been used to make measurements in phantoms but these active devices represent a clear disadvantage when considered for in vivo dosimetry. In such circumstance, dosimeters with atomic number similar to human tissue are needed. Carbon nanotubes have properties that potentially meet the demand, requiring low voltage in active devices and an atomic number similar to adipose tissue. In this study, single-wall carbon nanotubes (SWCNTs) buckypaper has been used to measure the beta particle dose deposited from a strontium-90 source, the medium displaying thermoluminescence at potentially useful sensitivity. As an example, the samples show a clear response for a dose of 2Gy. This finding suggests that carbon nanotubes can be used as a passive dosimeter specifically for the high levels of radiation exposures used in radiation therapy. Furthermore, the finding points towards further potential applications such as for space radiation measurements, not least because the medium satisfies a demand for light but strong materials of minimal capacitance.
In regard to thermoluminescence (TL) applied to dosimetry, in recent times a number of researchers have explored the role of optical fibers for radiation detection and measurement. Many of the studies have focused on the specific dopant concentration, the type of dopant and the fiber core diameter, all key dependencies in producing significant increase in the sensitivity of such fibers. At doses of less than 1 Gy none of these investigations have addressed the relationship between dose response and TL glow peak behavior of erbium (Er)-doped silica cylindrical fibers (CF). For x-rays obtained at accelerating potentials from 70 to 130 kVp, delivering doses of between 0.1 and 0.7 Gy, present study explores the issue of dose response, special attention being paid to determination of the kinetic parameters and dosimetric peak properties of Er-doped CF. The effect of dose response on the kinetic parameters of the glow peak has been compared against other fiber types, revealing previously misunderstood connections between kinetic parameters and radiation dose. Within the investigated dose range there was an absence of supralinearity of response of the Er-doped silica CF, instead sub-linear response being observed. Detailed examination of glow peak response and kinetic parameters has thus been shown to shed new light of the rarely acknowledged issue of the limitation of TL kinetic model and sub-linear dose response of Er-doped silica CF.
Worldwide, thyroid cancer accounts for some 10% of total cancer incidence, most markedly for females. Thyroid cancer radiotherapy, typically using 131I (T1/2 8.02 days; β- max energy 606 keV, branching ratio 89.9%), is widely adopted as an adjunct to surgery or to treat inoperable cancer and hyperthyroidism. With staff potentially receiving significant doses during source preparation and administration, radiation protection and safety assessment are required in ensuring practice complies with international guidelines. The present study, concerning a total of 206 patient radioiodine therapies carried out at King Faisal Specialist Hospital and Research Center over a 6-month period, seeks to evaluate patient and occupational exposures during hospitalization, measuring ambient doses and estimating radiation risk. Using calibrated survey meters, patient exposure dose-rate estimates were obtained at a distance of 30-, 100- and 300 cm from the neck region of each patient. Occupational and ambient doses were measured using calibrated thermoluminescent dosimeters. The mean and range of administered activity (AA, in MBq) for the thyroid cancer and hyperthyroidism treatment groups were 4244 ± 2021 (1669-8066), 1507.9 ± 324.1 (977.9-1836.9), respectively. The mean annual occupational doses were 1.2 mSv, that for ambient doses outside of the isolation room corridors were found to be 0.2 mSv, while ambient doses at the nursing station were below the lower limit of detection. Exposures to staff from patients being treated for thyroid cancer were less compared to hyperthyroidism patients. With a well-defined protocol, also complying with international safety requirements, occupational exposures were found to be relatively high, greater than most reported in previous studies.