Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Yim KS, Loh SM, Koh JT
    Dent J Malaysia Singapore, 1973 May;13(1):23-39.
    PMID: 4149371
    Matched MeSH terms: Tooth, Deciduous
  2. Sockalingam, S. Nagarajan M.P., Alida Mahyuddin
    MyJurnal
    Presence of accessory cusp on the occlusal surface of a tooth may occasionally pose problems to dentists'. Although its presents may not be a cause for alarm in most instances, nevertheless it can lead to serious consequences if it is damaged. This report describes a rare finding of bilateral central accessory cusp seen on the occlusal surface of both the 2nd maxillary deciduous molars and the need for continuous dental surveillance and preventive measures have been highlighted.
    Matched MeSH terms: Tooth, Deciduous
  3. Ahmed HM
    Int Endod J, 2013 Nov;46(11):1011-22.
    PMID: 23711096 DOI: 10.1111/iej.12134
    Paediatric endodontics is an integral part of dental practice that aims to preserve fully functional primary teeth in the dental arch. Pulpectomy of primary molars presents a unique challenge for dental practitioners. Negotiation and thorough instrumentation of bizarre and tortuous canals encased in roots programmed for physiological resorption are the main challenges for this treatment approach. Consequently, numerous in vitro and in vivo studies have been conducted to validate the application of some contemporary endodontic armamentarium for effective treatment in primary molars whilst maintaining favourable clinical outcomes. Electronic apex locators, rotary nickel-titanium files and irrigation techniques are at the forefront of endodontic armamentarium in paediatric dentistry. Hence, this review aims to map out the root and root canal morphology of primary molars, to discuss the application of electronic apex locators in primary molars and to provide an update on the preparation of their root canal systems.
    Matched MeSH terms: Tooth, Deciduous*
  4. Maqbool M, Noorani TY, Samsudin NA, Awang Nawi MA, Rossi-Fedele G, Karobari MI, et al.
    PMID: 34360261 DOI: 10.3390/ijerph18157970
    There is a paucity of information concerning vital pulp treatment outcomes in the undergraduate teaching setting. This study aimed to determine which type of deciduous molar, arch location, type of vital pulp therapy, and the number of carious surfaces involved had a better prognosis when carried out by undergraduate dental students. The method used was the review of clinical records of 590 patients with 600 deciduous molars, that visited the outpatient undergraduate dental clinics for vital pulp therapy. Statistical analysis used to determine the associations of tooth type, arch location, treatment type, and the number of carious surfaces involved in successful outcomes was logistic regression analysis with significance set at p < 0.05. According to the regression analysis model results, there was a significant association based on tooth type (p < 0.05) and arch location (p = 0.003). In addition, there was a significant association based on the type of treatment performed (p = 0.036). However, there was no significant association in success rates based on the number of carious surfaces involved (p = 0.873). In conclusion, second deciduous molars and maxillary deciduous molars had a better overall prognosis, and indirect pulp therapy was revealed to be more highly associated with successful treatment outcomes in comparison to ferric sulfate pulpotomy in our setting.
    Matched MeSH terms: Tooth, Deciduous*
  5. Gopinath VK, Pulikkotil SJ, Veettil SK, Dharmarajan L, Prakash PSG, Dhar V, et al.
    J Evid Based Dent Pract, 2022 Dec;22(4):101770.
    PMID: 36494111 DOI: 10.1016/j.jebdp.2022.101770
    OBJECTIVE: To compare the clinical and radiographic outcomes of pulpotomies in primary molars using bioactive endodontic materials and ferric sulfate.

    DESIGN: The search was conducted in PubMed, Ebscohost, ProQuest, and Scopus databases till June 2021. Children undergoing pulpotomy therapy in primary molars treated with ferric sulfate (FS) and bioactive endodontic materials were evaluated for clinical and radiographic success. Meta-analysis was performed on a random-effects model to assess the success at 6,12,18, and 24 months. The quality of studies was evaluated using the Cochrane risk of bias tool for randomized trials RESULTS: No significant difference was observed between Mineral trioxide aggregate (MTA) and FS at 24 months for both clinical [RR0.98 (95%CI 0.15,6.34), I2 = 0%] and radiographic [RR0.74 (95%CI: 0.23,2.43), I2 = 0%] success. At 6 months [RR1.36 (95%CI: 0.10,19.34), I2 = 33%], no difference was observed in the clinical [RR1.00 (95%CI: 0.95,1.05), I2 = 0%] and radiographic success [RR0.99 (95%CI: 0.88,1.11), I2 = 51%] between Biodentine (BD), FS and radiographic success of calcium enriched cement and FS [RR0.25 (95%CI: 0.03, 2.22), I2 = 0%].

    CONCLUSION: Amongst bioactive materials, MTA and FS demonstrated equal success rates in both clinical and radiographic outcomes with follow-up periods of up to 24 months. Future, high-quality trials are required to verify the result of the current review.

    Matched MeSH terms: Tooth, Deciduous*
  6. Rushmah Meon
    J Clin Pediatr Dent, 1992;16(2):121-3.
    PMID: 1498047
    The prevalence, possible etiological factors and management of hypodontia was briefly reviewed. A report of a case of hypodontia affecting the primary and permanent lower incisors was described.
    Matched MeSH terms: Tooth, Deciduous/abnormalities*
  7. Meon R
    Singapore Dent J, 1990 Dec;15(1):32-4.
    PMID: 2097727
    A case of talon cusp in the primary maxillary left central incisor is reported. This dental anomaly was not associated with any other somatic or dental abnormality. Though pulpal extension into the cusp was detected radiographically, clinical examination after the cusp was ground failed to reveal any pulpal extension. The tooth was badly carious and was restored with a polycarbonate crown.
    Matched MeSH terms: Tooth, Deciduous/abnormalities*
  8. Lee SH, Looi CY, Chong PP, Foo JB, Looi QH, Ng CX, et al.
    Curr Stem Cell Res Ther, 2021;16(5):551-562.
    PMID: 32988356 DOI: 10.2174/1574888X15666200928110923
    Mesenchymal Stem Cells (MSCs) are adult stem cells that are gaining worldwide attention for their multi-potential use in tissue engineering-based regenerative medicine. They can be obtained from numerous sources and one of the excellent sources is the dental tissue, such as Stem cells that are extracted from the Human Exfoliated Deciduous teeth (SHED). SHED are considered ideal due to their inherent characteristics, including the capability to proliferate quickly with minimal oncogenesis risk, multipotency capacity and their ability to suppress the immune system. On top of these positive cell traits, SHED are easily accessible with the patient's safety assured, posing less ethical issues and could also provide a sufficient number of cells for prospective clinical uses. This is primarily attributed to their ability to differentiate into multiple cell linages, including osteoblasts, odontoblasts, neuronal cells, adipocytes, as well as endothelial cells. Albeit SHED having a bright future, there still remains an obstacle to develop reliable experimental techniques to retain the long-term regeneration potential of the stem cells for prospective research and clinical applications. Therefore, this review aims to describe the various isolation, expansion and cryopreservation techniques used by researchers in this stem cell field. Optimization of these techniques is crucial to obtain distinct SHED culture with preserved stem cell properties, which enable more reproducible results that will be the key for further stem cell therapy development.
    Matched MeSH terms: Tooth, Deciduous*
  9. Mohd Nor NH, Mansor NI, Mohd Kashim MIA, Mokhtar MH, Mohd Hatta FA
    Int J Mol Sci, 2023 Jul 21;24(14).
    PMID: 37511524 DOI: 10.3390/ijms241411763
    Stem cells derived from human exfoliated deciduous teeth (SHED) have emerged as an alternative stem cell source for cell therapy and regenerative medicine because they are readily available, pose fewer ethical concerns, and have low immunogenicity and tumourigenicity. SHED offer a number of advantages over other dental stem cells, including a high proliferation rate with the potential to differentiate into multiple developmental lineages. The therapeutic effects of SHED are mediated by multiple mechanisms, including immunomodulation, angiogenesis, neurogenesis, osteogenesis, and adipogenesis. In recent years, there is ample evidence that the mechanism of action of SHED is mainly due to its paracrine action, releasing a wide range of soluble factors such as cytokines, chemokines, and trophic factors (also known as 'secretome') into the local tissue microenvironment to promote tissue survival and recovery. This review provides an overview of the secretome derived from SHED and highlights the bioactive molecules involved in tissue regeneration and their potential applications in regenerative medicine.
    Matched MeSH terms: Tooth, Deciduous*
  10. Ramamurthy P, Rath A, Sidhu P, Fernandes B, Nettem S, Fee PA, et al.
    Cochrane Database Syst Rev, 2022 Feb 11;2(2):CD012981.
    PMID: 35146744 DOI: 10.1002/14651858.CD012981.pub2
    BACKGROUND: Pit and fissure sealants are plastic materials that are used to seal deep pits and fissures on the occlusal surfaces of teeth, where decay occurs most often in children and adolescents. Deep pits and fissures can retain food debris and bacteria, making them difficult to clean, thereby causing them to be more susceptible to dental caries. The application of a pit and fissure sealant, a non-invasive preventive approach, can prevent dental caries by forming a protective barrier that reduces food entrapment and bacterial growth. Though moderate-certainty evidence shows that sealants are effective in preventing caries in permanent teeth, the effectiveness of applying pit and fissure sealants to primary teeth has yet to be established.

    OBJECTIVES: To evaluate the effects of sealants compared to no sealant or a different sealant in preventing pit and fissure caries on the occlusal surfaces of primary molars in children and to report the adverse effects and the retention of different types of sealants.

    SEARCH METHODS: An information specialist searched four bibliographic databases up to 11 February 2021 and used additional search methods to identify published, unpublished and ongoing studies. Review authors scanned the reference lists of included studies and relevant systematic reviews for further studies.

    SELECTION CRITERIA: We included parallel-group and split-mouth randomised controlled trials (RCTs) that compared a sealant with no sealant, or different types of sealants, for the prevention of caries in primary molars, with no restriction on follow-up duration. We included studies in which co-interventions such as oral health preventive measures, oral health education or tooth brushing demonstrations were used, provided that the same adjunct was used with the intervention and comparator. We excluded studies with complex interventions for the prevention of dental caries in primary teeth such as preventive resin restorations, or studies that used sealants in cavitated carious lesions.

    DATA COLLECTION AND ANALYSIS: Two review authors independently screened search results, extracted data and assessed risk of bias of included studies. We presented outcomes for the development of new carious lesions on occlusal surfaces of primary molars as odds ratios (OR) with 95% confidence intervals (CIs). Where studies were similar in clinical and methodological characteristics, we planned to pool effect estimates using a random-effects model where appropriate. We used GRADE methodology to assess the certainty of the evidence.

    MAIN RESULTS: We included nine studies that randomised 1120 children who ranged in age from 18 months to eight years at the start of the study. One study compared fluoride-releasing resin-based sealant with no sealant (139 tooth pairs in 90 children); two studies compared glass ionomer-based sealant with no sealant (619 children); two studies compared glass ionomer-based sealant with resin-based sealant (278 tooth pairs in 200 children); two studies compared fluoride-releasing resin-based sealant with resin-based sealant (113 tooth pairs in 69 children); one study compared composite with fluoride-releasing resin-based sealant (40 tooth pairs in 40 children); and one study compared autopolymerised sealant with light polymerised sealant (52 tooth pairs in 52 children). Three studies evaluated the effects of sealants versus no sealant and provided data for our primary outcome. Due to differences in study design such as age of participants and duration of follow-up, we elected not to pool the data. At 24 months, there was insufficient evidence of a difference in the development of new caries lesions for the fluoride-releasing sealants or no treatment groups (Becker Balagtas odds ratio (BB OR) 0.76, 95% CI 0.41 to 1.42; 1 study, 85 children, 255 tooth surfaces). For glass ionomer-based sealants, the evidence was equivocal; one study found insufficient evidence of a difference at follow-up between 12 and 30 months (OR 0.97, 95% CI 0.63 to 1.49; 449 children), while another with 12-month follow-up found a large, beneficial effect of sealants (OR 0.03, 95% CI 0.01 to 0.15; 107 children). We judged the certainty of the evidence to be low, downgrading two levels in total for study limitations, imprecision and inconsistency. We included six trials randomising 411 children that directly compared different sealant materials, four of which (221 children) provided data for our primary outcome. Differences in age of the participants and duration of follow-up precluded pooling of the data. The incidence of development of new caries lesions was typically low across the different sealant types evaluated. We judged the certainty of the evidence to be low or very low for the outcome of caries incidence. Only one study assessed and reported adverse events, the nature of which was gag reflex while placing the sealant material.

    AUTHORS' CONCLUSIONS: The certainty of the evidence for the comparisons and outcomes in this review was low or very low, reflecting the fragility and uncertainty of the evidence base. The volume of evidence for this review was limited, which typically included small studies where the number of events was low. The majority of studies in this review were of split-mouth design, an efficient study design for this research question; however, there were often shortcomings in the analysis and reporting of results that made synthesising the evidence difficult. An important omission from the included studies was the reporting of adverse events. Given the importance of prevention for maintaining good oral health, there exists an important evidence gap pertaining to the caries-preventive effect and retention of sealants in the primary dentition, which should be addressed through robust RCTs.

    Matched MeSH terms: Tooth, Deciduous
  11. Ong RM, Luddin N, Ahmed HM, Omar NS
    Singapore Dent J, 2012 Dec;33(1):19-23.
    PMID: 23739319 DOI: 10.1016/j.sdj.2012.11.001
    The aim of this study was to compare the cytotoxicity of accelerated-set white MTA (AWMTA) and accelerated-set Malaysian white PC (AMWPC) on stem cells from human exfoliated deciduous teeth (SHED). The test materials were introduced into paraffin wax moulds after mixing with calcium chloride dihydrate and sterile distilled water. Subsequently, the set cement specimens were sterilized, incubated in a prepared Dulbecco's modified Eagle medium (DMEM) for seven days. The biomarker CD166 was used for characterization of SHED using flow cytometry. The material extracts were diluted at five different concentrations and incubated for 72h with SHED. The cell viability was evaluated using Dimethylthiazol diphenyltetrazolium bromide (MTT) assay, and the data was analysed using Mann-Whitney test (P<0.05). The results showed that AWMTA revealed significantly greater cell viability at 25 and 12.5mg/ml concentrations (P<0.05). Concomitantly, AMWPC exhibited greater cell viability at concentrations <12.5mg/ml and the results were significant at 1.563mg/ml (P<0.05). Both materials demonstrated moderate cytotoxicity at 25mg/ml and slight cytotoxicity at 6.25 and 3.125mg/ml. At 1.563mg/ml, no cytotoxic activity was merely observed with AMWPC. In conclusion, AMWPC exhibited favourable and comparable cell viability to that of AWMTA, and has the potential to be used as an alternative and less costly material in dental applications.
    Matched MeSH terms: Tooth, Deciduous*
  12. Meon R, Woon KC
    Med J Malaysia, 1982 Dec;37(4):306-7.
    PMID: 7167080
    Incidence, aetiology, morphology, histology and symptoms of natal or neonatal teeth are presented. The commonly used terminology natal and neonatal teeth is adopted in this article. A case of an 8-week old girl with natal tooth and sublingual ulceration of the tip of the tongue is described.
    Matched MeSH terms: Tooth, Deciduous/anatomy & histology*
  13. Woon KC
    Aust Orthod J, 1988 Mar;10(3):183-5.
    PMID: 3166621
    Matched MeSH terms: Tooth, Deciduous*
  14. Ching HS, Luddin N, Rahman IA, Ponnuraj KT
    Curr Stem Cell Res Ther, 2017;12(1):71-79.
    PMID: 27527527
    The odontogenic and osteogenic potential of dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous tooth (SHED) have been shown clearly by various in vitro and in vivo studies. The findings are promising and demonstrated that dental tissue engineering can give a new hope to the individuals suffering from tooth loss and dental diseases. The evaluation of odontogenic and osteogenic differentiation of DPSCs and SHED is commonly carried out by an illustration of the expression of varied related markers. In this review, few commonly used markers such as alkaline phosphatase (ALP), collagen type 1 (Col I), dentin matrix acid phosphoprotein 1 (DMP1), dentin sialophosphoprotein (DSPP), matrix extracellular phosphoglycoprotein (MEPE), osteocalcin (OCN), and osteopontin (OPN). DSPP, DMP1, and MEPE (odontogenic markers), which play an important role during early odontoblastic differentiation and late dentin mineralization, have been highlighted. Osteoblastic proliferation and early/late osteoblastic differentiation can be assessed by estimating the expression of Col I, ALP, OCN and OPN. Despite that, till date, there is no marker which could demonstrate for certain, the differentiation of human DPSCs and SHED towards the odontogenic and osteogenic lineage. This review suggests that SHED are noticeably different from DPSCs and exhibited higher capacity for osteogenic differentiation compared to DPSCs. On the other hand, different expression levels are shown by SHED and DPSCs with regards to the osteoblast markers for osteoblastic differentiation, where, SHED expressed higher levels of ALP, Col I and OCN compared to DPSCs.
    Matched MeSH terms: Tooth, Deciduous/cytology*
  15. Mohd Nor NH, Berahim Z, Azlina A, Kannan TP
    Clin Oral Investig, 2019 Nov;23(11):3959-3966.
    PMID: 30847574 DOI: 10.1007/s00784-019-02827-x
    OBJECTIVES: This study aimed to differentiate and characterize fibroblast-like cells from stem cells from human exfoliated deciduous teeth (SHED).

    MATERIALS AND METHODS: The differentiation of fibroblast-like cells from SHED was carried out by using specific human recombinant connective tissue growth factor (CTGF). To characterize fibroblastic differentiation, the induced cells were subjected to morphological changes, proliferation rate, gene expression analysis using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), flow cytometry, and immunofluorescence staining. The commercial primary human gingival fibroblasts served as positive control in this study.

    RESULTS: The results from characterization analysis were compared with that of commercial cells to ensure that the cells differentiated from SHED were fibroblast-like cells. The results showed the inductive effect of CTGF for fibroblastic differentiation in SHED. SHED-derived fibroblasts were successfully characterized despite having similar morphological appearance, i.e., (i) significant proliferation rate between fibroblast-like cells and SHED, (ii) high expression of fibroblast-associated markers in qRT-PCR analysis, and (iii) positive staining against collagen type 1, fibroblast-specific protein 1, and human thymic fibroblasts in flow cytometry analysis and immunofluorescence staining. The same expression patterns were found in primary human gingival fibroblasts, respectively. SHED as negative control showed lower expression or no signal, thus confirming the cells differentiated from SHED were fibroblast-like cells.

    CONCLUSIONS: Taken together, the protocol adopted in this study suggests CTGF to be an appropriate inducer in the differentiation of SHED into fibroblast-like cells.

    CLINICAL RELEVANCE: The fibroblast-like cells differentiated from SHED could be used in future in vitro and in vivo dental tissue regeneration studies as well as in clinical applications where these cells are needed.

    Matched MeSH terms: Tooth, Deciduous*
  16. Nagendrababu V, Pulikkotil SJ, Veettil SK, Jinatongthai P, Gutmann JL
    J Evid Based Dent Pract, 2019 03;19(1):17-27.
    PMID: 30926099 DOI: 10.1016/j.jebdp.2018.05.002
    OBJECTIVES: Pulpotomy is the favored treatment for pulp exposure in carious primary teeth. This review aimed to compare the success rates of biodentine (BD) and mineral trioxide aggregate (MTA) pulpotomies in primary molars using meta-analysis (MA) and trial sequential analysis (TSA) and also to assess the quality of the results by Grading of Recommendations, Assessment, Development and Evaluation (GRADE).

    METHODS: PubMed, EBSCOhost, and Scopus databases were searched. Additional searching was performed in clinical trial registry, reference lists of systematic reviews, and textbooks. Randomized clinical trials (RCTs) published in the English language through October 2017 comparing the success of pulpotomies in vital primary molars with a follow-up of at least 6 months were selected. Study selection, data extraction, and risk of bias assessment were performed. MA by random effects model, TSA, and GRADE were performed.

    RESULTS: Eight RCTs (n = 474) were included. Two RCTs had low risk of bias. No significant difference was observed between MTA and BD in clinical success at 6 months (risk ratio [RR], 1.00; 95% confidence interval [95% CI], 0.97-1.02; I2 = 0%), 12 months (RR, 1.00; 95% CI, 0.96-1.05; I2 = 0%), and 18 months (RR, 1.00; 95% CI, 0.93-1.08; I2 = 0%). No difference was observed in radiographic success at follow-up of 6 months (RR, 0.99; 95% CI, 0.96-1.02; I2 = 0%), 12 months (RR, 1.02; 95% CI, 0.47-2.21; I2 = 0%), and 18 months (RR, 1.02; 95% CI, 0.91-1.15; I2 = 0%). TSA indicated lack of firm evidence for the results of the meta-analytic outcomes on clinical and radiographic success. GRADE assessed the evidence from the MA comparing the effect of MTA and BD in pulpotomy to be of low quality.

    CONCLUSION: BD and MTA have similar clinical and radiographic success rates based on limited and low-quality evidence. Future high-quality RCTs between MTA and BD is required to confirm the evidence.

    Matched MeSH terms: Tooth, Deciduous*
  17. Wahab NWA, Guad RM, Subramaniyan V, Fareez IM, Choy KW, Bonam SR, et al.
    Curr Stem Cell Res Ther, 2021;16(5):563-576.
    PMID: 32957893 DOI: 10.2174/1574888X15999200918105623
    Stem cells can multiply into more cells with similar types in an undifferentiated form and differentiate into other types of cells. The great success and key essence of stem cell technology is the isolation of high-quality Mesenchymal Stem Cells (MSCs) with high potency, either with multipotent or pluripotent property. In this line, Stem cells from Human Exfoliated Deciduous teeth (SHEDs) are highly proliferative stem cells from dental pulp and have multipoint differentiation capacity. These cells play a pivotal role in regenerative medicine, such as cell repair associated with neurodegenerative, hepatobiliary, and pancreatic diseases. In addition, stem cell therapy has been widely used to regulate immune response and repair of tissue lesions. This overview captured the differential biological characteristics, and the potential role of stem cell technology and paid special attention to human welfare SHEDs in eliminating the above-mentioned diseases. This review provides further insights into stem cell technology by expanding the therapeutic potential of SHEDs in tissue engineering and cell organ repairs.
    Matched MeSH terms: Tooth, Deciduous*
  18. Ahmed HM, Khamis MF, Gutmann JL
    Scanning, 2016 Nov;38(6):554-557.
    PMID: 26751249 DOI: 10.1002/sca.21299
    The root and root canal morphology of deciduous molars shows considerable variations. Consequently, a comprehensive understanding of the normal and unusual root and root canal configuration types in deciduous teeth is of prime importance. The purpose of this report is to describe a rare anatomical variation in a double-rooted maxillary deciduous molar examined by the dental operating microscope and micro-computed tomography. SCANNING 38:554-557, 2016. © 2016 Wiley Periodicals, Inc.
    Matched MeSH terms: Tooth, Deciduous/anatomy & histology*
  19. Zainol Abidin IZ, Manogaran T, Abdul Wahab RM, Karsani SA, Yazid MD, Yazid F, et al.
    Curr Stem Cell Res Ther, 2023;18(3):417-428.
    PMID: 35762553 DOI: 10.2174/1574888X17666220627145424
    BACKGROUND: Proteomic is capable of elucidating complex biological systems through protein expression, function, and interaction under a particular condition.

    OBJECTIVE: This study aimed to determine the potential of ascorbic acid alone in inducing differentially expressed osteoblast-related proteins in dental stem cells via the liquid chromatography-mass spectrometry/ mass spectrometry (LC-MS/MS) approach.

    METHODS: The cells were isolated from deciduous (SHED) and permanent teeth (DPSC) and induced with 10 μg/mL of ascorbic acid. Bone mineralisation and osteoblast gene expression were determined using von Kossa staining and reverse transcriptase-polymerase chain reaction. The label-free protein samples were harvested on days 7 and 21, followed by protein identification and quantification using LC-MS/MS. Based on the similar protein expressed throughout treatment and controls for SHED and DPSC, overall biological processes followed by osteoblast-related protein abundance were determined using the PANTHER database. STRING database was performed to determine differentially expressed proteins as candidates for SHED and DPSC during osteoblast development.

    RESULTS: Both cells indicated brownish mineral stain and expression of osteoblast-related genes on day 21. Overall, a total of 700 proteins were similar among all treatments on days 7 and 21, with 482 proteins appearing in the PANTHER database. Osteoblast-related protein abundance indicated 31 and 14 proteins related to SHED and DPSC, respectively. Further analysis by the STRING database identified only 22 and 11 proteins from the respective group. Differential expressed analysis of similar proteins from these two groups revealed ACTN4 and ACTN1 as proteins involved in both SHED and DPSC. In addition, three (PSMD11/RPN11, PLS3, and CLIC1) and one (SYNCRIP) protein were differentially expressed specifically for SHED and DPSC, respectively.

    CONCLUSION: Proteome differential expression showed that ascorbic acid alone could induce osteoblastrelated proteins in SHED and DPSC and generate specific differentially expressed protein markers.

    Matched MeSH terms: Tooth, Deciduous*
  20. Mohd Zainal Abidin R, Luddin N, Shamsuria Omar N, Mohamed Aly Ahmed H
    J Clin Pediatr Dent, 2015;39(3):235-40.
    PMID: 26208068 DOI: 10.17796/1053-4628-39.3.235
    To compare the cytotoxicity of conventional GIC and Resin Modified GIC (RMGIC) polymerized at 2 different times on stem cells from human exfoliated deciduous teeth (SHED).
    Matched MeSH terms: Tooth, Deciduous/cytology*; Tooth, Deciduous/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links