Displaying all 9 publications

Abstract:
Sort:
  1. Pour BM, Latha LY, Sasidharan S
    Molecules, 2011 May 03;16(5):3663-74.
    PMID: 21540795 DOI: 10.3390/molecules16053663
    BACKGROUND: The objective of this study was to investigate the toxicity of Lantana camara methanol extract.

    METHODS: In order to evaluate the toxicity of Lantana camara, the acute toxicity of the methanolic extract on adult mice and cytotoxicity test on Vero cell line were investigated. A fixed large dose of 2 g/kg body weight of L. camara leaf extract was administrated by a single oral gavage according to the OECD procedure.

    RESULTS: In 2 weeks, L. camara leaf extract showed no obvious acute toxicity. While female mice lost body weight after being treated with single dose of leaf extract in acute toxicity test, male ones lost organ mass, particularly for heart and kidney. The biochemical liver function tests showed significantly elevated TBIL and ALT in the L. camara leaf extract treated female mice group compared with the control group. Cytotoxicity effect of leaf extract of L. camara was estimated through a MTT assay. Cytotoxicity tests on Vero cell line disclosed that leaf extract at concentrations up to 500 µg/mL inhibited the growth of cells 2.5 times less than did Triton 100 × 1%. More interestingly, the cytotoxicity initiated to decline at elevated concentrations of this extract.

    CONCLUSIONS: The results of both tests confirm that L. camara shows a pro toxic effect.

    Matched MeSH terms: Toxicity Tests, Acute/methods*
  2. Jaćević V, Nepovimova E, Kuča K
    Chem Biol Interact, 2019 Aug 01;308:312-316.
    PMID: 31153983 DOI: 10.1016/j.cbi.2019.05.035
    K-oximes were developed as modern drug candidates acting as AChE reactivators. In this study, it has been investigated which interspecies and intergender differences changes could be observed in Wistar rats and Swiss mice, both genders, after the treatment with increasing doses of selected acetylcholinesterase reactivators - asoxime, obidoxime, K027, K048, and K075. After the 24 h, a number of died animals was counted and the median lethal dose (LD50) for each oxime was calculated. By using the intramuscular route of administration, asoxime and K027 had the least toxicity in female rats (640.21 mg/kg and 686.08 mg/kg), and in female mice (565.75 mg/kg and 565.74 mg/kg), respectively. Moreover, asoxime and K027 showed 3, 4 or 8 times less acute toxicity in comparison to K048, obidoxime and K075, respectively. Beyond, K075 had the greatest toxicity in male rats (81.53 mg/kg), and in male mice (57.34 mg/kg), respectively. Our results can help to predict likely adverse toxic effects, target organ systems and possible outcome in the event of massive human overexposure, and in establishing risk categories or in dose selection for the initial repeated dose toxicity tests to be conducted for each oxime.
    Matched MeSH terms: Toxicity Tests, Acute/methods*
  3. Kue CS, Tan KY, Lam ML, Lee HB
    Exp Anim, 2015;64(2):129-38.
    PMID: 25736707 DOI: 10.1538/expanim.14-0059
    The chick embryo chorioallantoic membrane (CAM) is a preclinical model widely used for vascular and anti-vascular effects of therapeutic agents in vivo. In this study, we examine the suitability of CAM as a predictive model for acute toxicology studies of drugs by comparing it to conventional mouse and rat models for 10 FDA-approved anticancer drugs (paclitaxel, carmustine, camptothecin, cyclophosphamide, vincristine, cisplatin, aloin, mitomycin C, actinomycin-D, melphalan). Suitable formulations for intravenous administration were determined before the average of median lethal dose (LD50) and median survival dose (SD(50)) in the CAM were measured and calculated for these drugs. The resultant ideal LD(50) values were correlated to those reported in the literature using Pearson's correlation test for both intravenous and intraperitoneal routes of injection in rodents. Our results showed moderate correlations (r(2)=0.42 - 0.68, P<0.005-0.05) between the ideal LD(50) values obtained using the CAM model with LD(50) values from mice and rats models for both intravenous and intraperitoneal administrations, suggesting that the chick embryo may be a suitable alternative model for acute drug toxicity screening before embarking on full toxicological investigations in rodents in development of anticancer drugs.
    Matched MeSH terms: Toxicity Tests, Acute/methods*
  4. Salam NA, Naeem MA, Malik NS, Riaz M, Shahiq-Uz-Zaman -, Masood-Ur-Rehman -, et al.
    Pak J Pharm Sci, 2020 Jan;33(1(Supplementary)):269-279.
    PMID: 32122858
    The main objective of the present study was to explore the potential of matrix tablets as extended release dosage form of tianeptine, using HMPC K100 as a polymer. HPMC K100 extended the release of the drug from formulation due to the gel-like structure. Direct compression method was adopted to compress the tablets using different concentrations of polymer. Tablets were evaluated for pre-compression and post-compression parameters. Drug release study showed that tablet extends the release of drug with the increasing concentration of polymer. Drug, polymers and tablets were analyzed and/or characterized for compatibility, degradation, thermal stability, amorphous or crystalline nature via FTIR, DSC, TGA, XRD studies. SEM study predicted that tablets had a uniform structure. HPMC K100 based tablets were similar to that of the reference product. Acute toxicity study conducted on Swiss albino mice showed that matrix tablets were safe and non-toxic, as no changes in physical activity and functions of organs were observed. Biochemical and histopathological study revealed lack of any kind of abnormality in liver and renal function. Moreover, necrotic changes were absent at organ level.
    Matched MeSH terms: Toxicity Tests, Acute/methods*
  5. Jin Y, Teh SS, Lau HLN, Mah SH
    J Oleo Sci, 2021 Dec 03;70(12):1749-1759.
    PMID: 34759114 DOI: 10.5650/jos.ess21215
    Refined red palm-pressed mesocarp olein (PPMO) is recovered from palm-pressed mesocarp fiber, which is a by-product from palm oil mill. Its utilization in food industry is extremely limited even though it contains various phytonutrients. Thus, this study aimed to evaluate its toxicity effects by using the male Sprague-Dawley rat model. The rats were administered with a single dose of 2 g/kg PPMO in an acute toxicity study while administered with 2, 1, or 0.5 g/kg PPMO daily for 28 days in a sub-chronic toxicity study. The mortality, oral LD50 value, clinical observation, body and organ weight, hematological and biochemical analyses, pathological and histopathological examinations were assessed. The overall outcomes indicated that PPMO is non-toxic up to 2 g/kg and considered safe to be used in food application, especially as functional food ingredient and supplement attributed to its phytonutrients. Besides, this study provides an insight in alternative utilization of the wastes from palm oil mill.
    Matched MeSH terms: Toxicity Tests, Acute/methods*
  6. Lakshmanan H, Raman J, David P, Wong KH, Naidu M, Sabaratnam V
    J Ethnopharmacol, 2016 Dec 24;194:1051-1059.
    PMID: 27816657 DOI: 10.1016/j.jep.2016.10.084
    ETHNOPHARMACOLOGICAL RELEVANCE: Hericium erinaceus is a culinary-medicinal mushroom and has a long history of usage in traditional Chinese medicine as a tonic for stomach disorders, ulcers and gastrointestinal ailments.

    AIM OF THE STUDY: The present investigation was aimed to evaluate the potential toxic effects of the aqueous extract from the fruiting bodies of H. erinaceus in rats by a sub-chronic oral toxicity study.

    MATERIALS AND METHODS: In this sub-chronic toxicity study, rats were orally administered with the aqueous extract of H. erinaceus (HEAE) at doses of 250, 500 and 1000mg/kg body weight (b.w.) for 90 days. Body weights were recorded on a weekly basis and general behavioural changes were observed. The blood samples were subjected to haematological, biochemical, serum electrolyte, and antioxidant enzyme estimations. The rats were sacrificed and organs were processed and examined for histopathological changes.

    RESULTS: No mortality or morbidity was observed in all the treated and control rats. The results showed that the oral administration of HEAE daily at three different doses for 90 days had no adverse effect on the general behaviour, body weight, haematology, clinical biochemistry, and relative organ weights. Histopathological examination at the end of the study showed normal architecture except for few non-treatment related histopathological changes observed in liver, heart and spleen.

    CONCLUSION: The results of this sub-chronic toxicity study provides evidence that oral administration of HEAE is safe up to 1000mg/kg and H. erinaceus consumption is relatively non-toxic.

    Matched MeSH terms: Toxicity Tests, Acute/methods
  7. Khoo LW, Foong Kow AS, Maulidiani M, Lee MT, Tan CP, Shaari K, et al.
    Molecules, 2018 Aug 29;23(9).
    PMID: 30158427 DOI: 10.3390/molecules23092172
    The present study aims for the first time to provide the in vivo acute toxicological profile of the highest dose of Clinacanthus nutans (Burm. f.) Lindau water leaf extract according to the Organization for economic co-operation and development (OECD) 423 guidelines through conventional toxicity and advanced proton nuclear magnetic resonance (¹H-NMR) serum and urinary metabolomics evaluation methods. A single dose of 5000 mg/kg bw of C. nutans water extract was administered to Sprague Dawley rats, and they were observed for 14 days. Conventional toxicity evaluation methods (physical observation, body and organ weight, food and water consumption, hematology, biochemical testing and histopathological analysis) suggested no abnormal toxicity signs. Serum ¹H-NMR metabolome revealed no significant metabolic difference between untreated and treated groups. Urinary ¹H-NMR analysis, on the other hand, revealed alteration in carbohydrate metabolism, energy metabolism and amino acid metabolism in extract-treated rats after 2 h of extract administration, but the metabolic expression collected after 24 h and at Day 5, Day 10 and Day 15 indicated that the extract-treated rats did not accumulate any toxicity biomarkers. Importantly, the outcomes further suggest that single oral administration of up to 5000 mg/kg bw of C. nutans water leaf extract is safe for consumption.
    Matched MeSH terms: Toxicity Tests, Acute/methods*
  8. Fakhlaei R, Selamat J, Razis AFA, Sukor R, Ahmad S, Amani Babadi A, et al.
    Molecules, 2021 Oct 15;26(20).
    PMID: 34684803 DOI: 10.3390/molecules26206222
    Honey is prone to be adulterated through mixing with sugars, cheap and low-quality honey, and other adulterants. Consumption of adulterated honey may cause several health issues such as weight gain, diabetes, and liver and kidney dysfunction. Therefore, studying the impact of consumption of adulterated honey on consumers is critical since there is a lack of study in this field. Hence, the aims of this paper were: (1) to determine the lethal concentration (LC50) of adulterated honey using zebrafish embryo, (2) to elucidate toxicology of selected adulterated honey based on lethal dose (LD50) using adult zebrafish, (3) to determine the effects of adulterated honey on histological changes of zebrafish, and (4) to screen the metabolites profile of adulterated honey by using zebrafish blood serum. The LC50 of Heterotrigona itama honey (acacia honey) and its sugar adulterants (light corn sugar, cane sugar, inverted sugar, and palm sugar in the proportion of 1-3% (w/w) from the total volume) was determined by the toxicological assessment of honey samples on zebrafish embryos (different exposure concentrations in 24, 48, 72, and 96 h postfertilization (hpf)). Pure H. itama honey represents the LC50 of 34.40 ± 1.84 (mg/mL) at 96 hpf, while the inverted sugar represents the lowest LC50 (5.03 ± 0.92 mg/mL) among sugar adulterants. The highest concentration (3%) of sugar adulterants were used to study the toxicology of adulterated honey using adult zebrafish in terms of acute, prolong-acute, and sub-acute tests. The results of the LD50 from the sub-acute toxicity test of pure H. itama honey was 2.33 ± 0.24 (mg/mL). The histological studies of internal organs showed a lesion in the liver, kidney, and spleen of adulterated treated-honey groups compared to the control group. Furthermore, the LC-MS/MS results revealed three endogenous metabolites in both the pure and adulterated honey treated groups, as follows: (1) S-Cysteinosuccinic acid, (2) 2,3-Diphosphoglyceric acid, and (3) Cysteinyl-Tyrosine. The results of this study demonstrated that adulterated honey caused mortality, which contributes to higher toxicity, and also suggested that the zebrafish toxicity test could be a standard method for assessing the potential toxicity of other hazardous food additives. The information gained from this research will permit an evaluation of the potential risk associated with the consumption of adulterated compared to pure honey.
    Matched MeSH terms: Toxicity Tests, Acute/methods
  9. Subramaniyan V, Shaik S, Bag A, Manavalan G, Chandiran S
    Pak J Pharm Sci, 2018 Mar;31(2):509-516.
    PMID: 29618442
    To determine the ameliorative potential of the active fraction from different extracts of Rumex vesicarius against potassium dichromate and gentamicin induced nephrotoxicity in experimental rats and its possible mechanism of action. Both sex wistar rats were divided into 6 groups (n=6/group) were fed with a control, potassium dichromate and gentamicin supplemented with different extracts at the doses of 200 and 400mg/kg respectively. Oral administration of EERV offered a significant (p<0.01 and p<0.001) dose dependent protection against PD and GN induced nephrotoxicity. Potassium dichromate and gentamicin nephrotoxicity assessed in terms of body weight, kidney weight, creatinine, urea, uric acid, BUN, albumin and total protein. Thus the present study revealed that EERV phytochemical constituents play an important role in protection against kidney damage.
    Matched MeSH terms: Toxicity Tests, Acute/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links