METHODS: The cross-sectional study included 322 children between 3 and 11 years of age born term or preterm, with or without ROP, and with or without treatment for ROP. The ROP treatments were laser therapy, intravitreal injection (IVI) of anti-vascular endothelial growth factor, or their combination. Stereoacuity was measured using the Titmus Stereo Test, and the results among various age groups were analyzed.
RESULTS: Stereopsis was found to improve with increasing age at testing (P 0.05). No significant differences in stereopsis were identified between children with ROP treated with laser versus with IVI (P > 0.05). From multivariate analysis, younger age at testing (P = 0.001) and younger gestational age (P factors for poorer stereoacuity.
DESIGN: A questionnaire containing 47 questions was developed which encompassed clinical scenarios such as treatment response to anti-vascular endothelial growth factor and steroid, treatment side effects, as well as cost and compliance/reimbursement in the management of DME using a Dephi questionnaire as guide.
METHODS: An expert panel of 12 retinal specialists from Singapore, Malaysia, Philippines, India and Vietnam responded to this questionnaire on two separate occasions. The first round responses were compiled, analyzed and discussed in a round table discussion where a consensus was sought through voting. Consensus was considered achieved, when 9 of the 12 panellists (75%) agreed on a recommendation.
RESULTS: The DME patients were initially profiled based on their response to treatment, and the terms target response, adequate response, nonresponse, and inadequate response were defined. The panellists arrived at a consensus on various aspects of DME treatment such as need for classification of patients before treatment, first-line treatment options, appropriate time to switch between treatment modalities, and steroid-related side effects based on which recommendations were derived, and a treatment algorithm was developed.
CONCLUSIONS: This consensus article provides comprehensive, evidence-based treatment guidelines in the management of DME in Asian population. In addition, it also provides recommendations on other aspects of DME management such as steroid treatment for stable glaucoma patients, management of intraocular pressure rise, and recommendations for cataract development.
Objective: To compare treatment outcomes of ranibizumab, 0.5 mg, plus prompt vPDT combination therapy with ranibizumab, 0.5 mg, monotherapy in participants with PCV for 24 months.
Design, Setting, and Participants: This 24-month, phase IV, double-masked, multicenter, randomized clinical trial (EVEREST II) was conducted among Asian participants from August 7, 2013, to March 2, 2017, with symptomatic macular PCV confirmed using indocyanine green angiography.
Interventions: Participants (N = 322) were randomized 1:1 to ranibizumab, 0.5 mg, plus vPDT (combination therapy group; n = 168) or ranibizumab, 0.5 mg, plus sham PDT (monotherapy group; n = 154). All participants received 3 consecutive monthly ranibizumab injections, followed by a pro re nata regimen. Participants also received vPDT (combination group) or sham PDT (monotherapy group) on day 1, followed by a pro re nata regimen based on the presence of active polypoidal lesions.
Main Outcomes and Measures: Evaluation of combination therapy vs monotherapy at 24 months in key clinical outcomes, treatment exposure, and safety. Polypoidal lesion regression was defined as the absence of indocyanine green hyperfluorescence of polypoidal lesions.
Results: Among 322 participants (mean [SD] age, 68.1 [8.8] years; 225 [69.9%] male), the adjusted mean best-corrected visual acuity (BCVA) gains at month 24 were 9.6 letters in the combination therapy group and 5.5 letters in the monotherapy group (mean difference, 4.1 letters; 95% CI, 1.0-7.2 letters; P = .005), demonstrating that combination therapy was superior to monotherapy by the BCVA change from baseline to month 24. Combination therapy was superior to monotherapy in terms of complete polypoidal lesion regression at month 24 (81 of 143 [56.6%] vs 23 of 86 [26.7%] participants; P
METHODS: Non-interventional multicenter historical cohort study of intravitreal ranibizumab use for nAMD in routine clinical practice between April 2010 and April 2013. Eligible patients were diagnosed with nAMD, received at least one intravitreal ranibizumab injection during the study period, and had been observed for a minimum of 1 year (up to 3 years). Reimbursement scenarios were defined as self-paid, partially-reimbursed, and fully-reimbursed.
RESULTS: More than three-fourths (n = 2521) of the analysis population was partially-reimbursed for ranibizumab, while 16.4% (n = 532) was fully-reimbursed, and 5.8% was self-paid (n = 188). The average annual ranibizumab injection frequency was 4.1 injections in the partially-reimbursed, 4.7 in the fully-reimbursed and 2.6 in the self-paid populations. The average clinical monitoring frequency was estimated to be 6.7 visits/year, with similar frequencies observed across reimbursement categories. On average, patients experienced VA reduction of -0.7 letters and a decrease in CRT of -44.4 μm. The greatest mean CRT change was observed in the self-paid group, with -92.6 μm.
CONCLUSIONS: UNCOVER included a large, heterogeneous ranibizumab-treated nAMD population in real-world settings. Patients in all reimbursement scenarios attained vision stability on average, indicating control of disease activity.