Displaying all 4 publications

Abstract:
Sort:
  1. Natnan ME, Low CF, Chong CM, Bunawan H, Baharum SN
    Sci Rep, 2023 Aug 08;13(1):12830.
    PMID: 37553472 DOI: 10.1038/s41598-023-40096-7
    Grouper culture has been expanding in Malaysia due to the huge demand locally and globally. However, due to infectious diseases such as vibriosis, the fish mortality rate increased, which has affected the production of grouper. Therefore, this study focuses on the metabolic profiling of surviving infected grouper fed with different formulations of fatty acid diets that acted as immunostimulants for the fish to achieve desirable growth and health performance. After a six-week feeding trial and one-week post-bacterial challenge, the surviving infected grouper was sampled for GC-MS analysis. For metabolite extraction, a methanol/chloroform/water (2:2:1.8) extraction method was applied to the immune organs (spleen and liver) of surviving infected grouper. The distribution patterns of metabolites between experimental groups were then analyzed using a metabolomics platform. A total of 50 and 81 metabolites were putatively identified from the spleen and liver samples, respectively. Our further analysis identified glycine, serine, and threonine metabolism, and alanine, aspartate and glutamate metabolism had the most impacted pathways, respectively, in spleen and liver samples from surviving infected grouper. The metabolites that were highly abundant in the spleen found in these pathways were glycine (20.9%), l-threonine (1.0%) and l-serine (0.8%). Meanwhile, in the liver l-glutamine (1.8%) and aspartic acid (0.6%) were found to be highly abundant. Interestingly, among the fish diet groups, grouper fed with oleic acid diet produced more metabolites with a higher percent area compared to the control diets. The results obtained from this study elucidate the use of oleic acid as an immunostimulant in fish feed formulation affects more various immune-related metabolites than other formulated feed diets for vibriosis infected grouper.
    Matched MeSH terms: Vibrio vulnificus*
  2. Zetti ZR, Norazlah B, Raha AR
    Med J Malaysia, 2009 Sep;64(3):246-7.
    PMID: 20527281 MyJurnal
    Vibrio vulnificus is a gram-negative marine bacterium that may cause local wound infection, distinctive soft tissue infection, gastroenteritis and septicaemia with a high mortality rate. A healthy man presented with severe abdominal pain, diarrhoea and fever followed by development of multiple blisters, cellulitis and necrotizing fasciitis of the lower limbs, who progressed rapidly to fulminant sepsis caused by this organism. Vibrio vulnificus septicaemia should be suspected in the presence of sepsis and progressive soft-tissue infection with recent history of raw seafood consumption.
    Matched MeSH terms: Vibrio vulnificus/isolation & purification*
  3. Paydar M, Thong KL
    J Food Prot, 2013 Oct;76(10):1797-800.
    PMID: 24112583 DOI: 10.4315/0362-028X.JFP-13-141
    Vibrio vulnificus is a highly invasive human pathogen that exists naturally in estuarine environment and coastal waters. In this study, we used different PCR assays to detect V. vulnificus in 260 seafood and 80 seawater samples. V. vulnificus was present in about 34 (13%) of the 260 seafood samples and 18 (23%) of the 80 seawater samples. Repetitive extragenic palindromic PCR (REP-PCR) and enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) were applied to subtype the V. vulnificus isolates. Twenty-five REP profiles and 45 ERIC profiles were observed, and the isolates were categorized into 9 and 10 distinct clusters at the similarity of 80%, by REP-PCR and ERIC-PCR, respectively. ERIC-PCR is more discriminative than REP-PCR in subtyping V. vulnificus, demonstrating high genetic diversity among the isolates.
    Matched MeSH terms: Vibrio vulnificus/genetics; Vibrio vulnificus/isolation & purification*
  4. Heng SP, Letchumanan V, Deng CY, Ab Mutalib NS, Khan TM, Chuah LH, et al.
    Front Microbiol, 2017;8:997.
    PMID: 28620366 DOI: 10.3389/fmicb.2017.00997
    Vibrio vulnificus is a Gram negative, rod shaped bacterium that belongs to the family Vibrionaceae. It is a deadly, opportunistic human pathogen which is responsible for the majority of seafood-associated deaths worldwide. V. vulnificus infection can be fatal as it may cause severe wound infections potentially requiring amputation or lead to sepsis in susceptible individuals. Treatment is increasingly challenging as V. vulnificus has begun to develop resistance against certain antibiotics due to their indiscriminate use. This article aims to provide insight into the antibiotic resistance of V. vulnificus in different parts of the world as well as an overall review of its clinical manifestations, treatment, and prevention. Understanding the organism's antibiotic resistance profile is vital in order to select appropriate treatment and initiate appropriate prevention measures to treat and control V. vulnificus infections, which should eventually help lower the mortality rate associated with this pathogen worldwide.
    Matched MeSH terms: Vibrio vulnificus
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links