METHODS: This study uses the literature review method by reviewing 50 articles from journals and databases.
RESULTS: A review of several articles, namely ginger has bioactive components such as gingerol. Ginger is used as a treatment in complementary therapies using plants. Ginger is a strategy with many benefits and functions as a nutritional complement to the body. This benefit has shown the effect of anti-inflammatory, antioxidant, and anticancer against nausea and vomiting due to chemotherapy in breast cancer.
CONCLUSION: Anticancer in ginger is shown by polyphenols associated with anti-metastatic, anti-proliferative, antiangiogenic, anti-inflammatory, cell cycle arrest, apoptosis, and autophagy. Therefore, consuming ginger regularly affects natural herbal therapy with the prevention and treatment of breast cancer and serves as a prevention against the effects of chemotherapy.
MATERIALS AND METHODS: This cost evaluation refers to 2011, the year in which the observation was conducted. Direct costs incurred by hospitals including the drug acquisition, materials and time spent for clinical activities from prescribing to dispensing of home medications were evaluated (MYR 1=$0.32 USD). As reported to be significantly different between two regimens (96.1% vs 81.0%; p=0.017), the complete response rate of acute emesis which was defined as a patient successfully treated without any emesis episode within 24 hours after LEC was used as the main indicator for effectiveness.
RESULTS: Antiemetic drug acquisition cost per patient was 40.7 times higher for the granisetron-based regimen than for the standard regimen (MYR 64.3 vs 1.58). When both the costs for materials and clinical activities were included, the total cost per patient was 8.68 times higher for the granisetron-based regimen (MYR 73.5 vs 8.47). Considering the complete response rates, the mean cost per successfully treated patient in granisetron group was 7.31 times higher (MYR 76.5 vs 10.5). The incremental cost-effectiveness ratio (ICER) with granisetron-based regimen, relative to the standard regimen, was MYR 430.7. It was found to be most sensitive to the change of antiemetic effects of granisetron-based regimen.
CONCLUSIONS: While providing a better efficacy in acute emesis control, the low incidence of acute emesis and high ICER makes use of granisetron as primary prophylaxis in LEC controversial.
MATERIALS AND METHODS: This was a single-centre, prospective cohort study. A total of 96 patients receiving LEC (52 with and 42 without granisetron) were randomly selected from the full patient list generated using the e-Hospital Information System (e-His). The rates of complete control (no CINV from days 1 to 5) and complete response (no nausea or vomiting in both acute and delayed phases) were identified through patient diaries which were adapted from the MASCC Antiemesis Tool (MAT). Selected covariates including gender, age, active alcohol consumption, morning sickness and previous chemotherapy history were controlled using the multiple logistic regression analyses.
RESULTS: Both groups showed significant difference with LEC regimens (p<0.001). No differences were found in age, gender, ethnic group and other baseline characteristics. The granisetron group indicated a higher complete response rate in acute emesis (adjusted OR: 0.1; 95%CI 0.02-0.85; p=0.034) than did the non-granisetron group. Both groups showed similar complete control and complete response rates for acute nausea, delayed nausea and delayed emesis.
CONCLUSIONS: Granisetron injection used as the primary prophylaxis in LEC demonstrated limited roles in CINV control. Optimization of the guideline-recommended antiemetic regimens may serve as a less costly alternative to protect patients from uncontrolled acute emesis.
METHODS: Using a decision tree model, clinical and economic outcomes associated with olanzapine-containing regimen and standard antiemetic regimen (doublet antiemetic regimen: dexamethasone+first generation 5HT3RA) in most SEA countries except in Singapore (triplet antiemetic regimen: dexamethasone+first generation 5HT3RA + aprepitant) for CINV prevention following HEC were evaluated. This analysis was performed in Thailand, Malaysia, Indonesia, and Singapore, using societal perspective method with 5-day time horizon. Input parameters were derived from literature, network meta-analysis, government documents, and hospital databases. Outcomes were incremental cost-effectiveness ratio (ICER) in USD/quality-adjusted life year (QALY) gained. A series of sensitivity analyses including probabilistic sensitivity analysis were also performed.
RESULTS: Compared to doublet antiemetic regimen, addition of olanzapine resulted in incremental QALY of 0.0022-0.0026 with cost saving of USD 2.98, USD 27.71, and USD 52.20 in Thailand, Malaysia, and Indonesia, respectively. Compared to triplet antiemetic regimen, switching aprepitant to olanzapine yields additional 0.0005 QALY with cost saving of USD 60.91 in Singapore. The probability of being cost-effective at a cost-effectiveness threshold of 1 GDP/capita varies from 14.7 to 85.2% across countries.
CONCLUSION: The use of olanzapine as part of standard antiemetic regimen is cost-effective for the prevention of CINV in patients receiving HEC in multiple SEA countries.
METHODS: Sixty patients were randomised to receive IV dexmedetomidine 0.5 μg.kg-1 (Group DEX, n = 30) or IV saline (Group P, n = 30). General anaesthesia was maintained with Sevoflurane: oxygen: air, titrated to BIS 40-60. Pain intensity, sedation, rescue analgesics, nausea/vomiting and resumption of daily activities were recorded at 1 h, and postoperative day (POD) 1-5.
RESULTS: Group DEX patients had significant reduction in sevoflurane minimum alveolar concentration (MAC), mean (SD) DEX vs. Placebo 0.6 (0.2) vs. 0.9 (0.1), p = 0.037; reduced postoperative resting pain at 1 h (VAS 0-10) (mean (SD) 1.00 (1.84) vs. 2.63 (2.78), p = 0.004), POD 1 (mean (SD) 1.50 (1.48) vs. 2.87 (2.72), p = 0.002), POD 2 (0.53 (0.97) vs. 1.73 (1.96), p = 0.001) and POD 3 (0.30 (0.75) vs. 0.89 (1.49), p = 0.001). DEX patients also had less pain on movement POD 1 (3.00 (2.12) vs. 4.30 (3.10), p = 0.043) and POD 2 (2.10 (1.98) vs. 3.10 (2.46), p = 0.040), with higher resumption of daily activities by 48 h compared to placebo, 87% vs. 63%, p = 0.04.
CONCLUSIONS: We conclude that a single dose of dexmedetomidine was a useful adjuvant in reducing MAC and postoperative pain (at 1 h and POD 1-3), facilitating faster return to daily activities by 48 h.
TRIAL REGISTRATION: The Australian New Zealand Clinical Trials Registry (ANZCTR), ACTRN12617001120369 , 31st July 2017, retrospectively registered.
METHODS: In three double-blind phase 3 studies, patients receiving HEC or MEC were randomized 1:1 to receive oral rolapitant 180 mg or placebo prior to chemotherapy plus 5-hydroxytryptamine type 3 receptor antagonist and dexamethasone therapy. Patients completed the FLIE questionnaire on day 6 of cycle 1. Endpoints included FLIE total score, nausea and vomiting domain scores, and the proportion of patients with no impact on daily life (total score >108 [range 18-126]). We performed a prespecified analysis of the MEC/anthracycline-cyclophosphamide (AC) study and a post hoc analysis of two pooled cisplatin-based HEC studies.
RESULTS: In the pooled HEC studies, rolapitant significantly improved the FLIE total score (114.5 vs 109.3, p control; similar results were observed in the MEC/AC study for FLIE total score (112.7 vs 108.6, p control in the MEC/AC study (73.2 vs 67.4, p = 0.027).
CONCLUSIONS: Compared with control, rolapitant improved quality of life in patients receiving HEC or MEC.