Displaying all 8 publications

Abstract:
Sort:
  1. Yu H, Zheng Y, Zhou C, Liu L, Wang L, Cao J, et al.
    Carbohydr Polym, 2024 Feb 01;325:121583.
    PMID: 38008470 DOI: 10.1016/j.carbpol.2023.121583
    The potential of ultrasonication-driven molecular self-assembly of whey protein isolate (WPI) with chitosan (CS)/chitooligosaccharide (COS) to stabilize Pickering emulsions was examined, based on CS/COS ligands-induced partial unfolding in remodeling the Pickering particles features. Multi-spectral analysis suggested obvious changes in conformational structures of WPI due to interaction with CS/COS, with significantly higher unfolding degrees of WPI induced by COS. Non-covalent interactions were identified as the major forces for WPI-CS/COS conjugates. Ultrasonication enhanced electrostatic interaction between CS's -NH3 groups and WPI's -COO- groups which improved emulsification activity and storability of WPI-COS stabilized Pickering emulsion. This was attributed to increased surface hydrophobicity and decreased particle size compared to WPI-CS associated with differential unfolding degrees induced by different saccharide ligands. CLSM and SEM consistently observed smaller emulsion droplets in WPI-COS complexes than WPI-CS/COS particles tightly adsorbed at the oil-water interface. The electrostatic self-assembly of WPI with CS/COS greatly enhanced the encapsulation efficiency of quercetin than those stabilized by WPI alone and ultrasound further improved encapsulation efficiency. This corresponded well with the quantitative affinity parameters between quercetin and WPI-CS/COS complexes. This investigation revealed the great potential of glycan ligands-induced conformational transitions of extrinsic physical disruption in tuning Pickering particle features.
    Matched MeSH terms: Whey Proteins/chemistry
  2. Sadeghinezhad E, Kazi SN, Dahari M, Safaei MR, Sadri R, Badarudin A
    Crit Rev Food Sci Nutr, 2015;55(12):1724-43.
    PMID: 24731003 DOI: 10.1080/10408398.2012.752343
    Heat exchanger performance degrades rapidly during operation due to formation of deposits on heat transfer surfaces which ultimately reduces service life of the equipment. Due to scaling, product deteriorates which causes lack of proper heating. Chemistry of milk scaling is qualitatively understood and the mathematical models for fouling at low temperatures have been produced but the behavior of systems at ultra high temperature processing has to be studied further to understand in depth. In diversified field, the effect of whey protein fouling along with pressure drop in heat exchangers were conducted by many researchers. Adding additives, treatment of heat exchanger surfaces and changing of heat exchanger configurations are notable areas of investigation in milk fouling. The present review highlighted information about previous work on fouling, influencing parameters of fouling and its mitigation approach and ends up with recommendations for retardation of milk fouling and necessary measures to perform the task.
    Matched MeSH terms: Whey Proteins/chemistry
  3. Wan Mohamad WAF, McNaughton D, Augustin MA, Buckow R
    Food Chem, 2018 Aug 15;257:361-367.
    PMID: 29622223 DOI: 10.1016/j.foodchem.2018.03.027
    Understanding the bioactive partitioning between the phases of an emulsion system underpins strategies for improving the efficiency of bioactive protection against degradation. We analysed partitioning of β-carotene in emulsions with various formulations in-situ using confocal Raman microscopy (CRM). The partitioning of β-carotene into the aqueous phase of emulsions increased when whey protein isolate (WPI) was heat or high pressure-treated prior to emulsion formation. However, increasing the concentration of high pressure-treated WPI reduced the β-carotene partitioning into the aqueous phase. Increasing the solid fat content in the carrier oil favoured the migration of β-carotene into the aqueous phase. The use of WPI as the emulsifier resulted in a greater partitioning of β-carotene into the aqueous phase compared to when Tween 40 was the emulsifier. This study demonstrates that partitioning of β-carotene between the aqueous and oil phase is dependent on the characteristics of the oil phase, emulsifier type and processing.
    Matched MeSH terms: Whey Proteins/chemistry*
  4. Chen Y, Ge H, Zheng Y, Zhang H, Li Y, Su X, et al.
    J Agric Food Chem, 2020 Jun 03;68(22):6190-6201.
    PMID: 32379465 DOI: 10.1021/acs.jafc.0c01250
    The present study aims to design a milk fat globule membrane (MFGM)-inspired structured membrane (phospholipid- and protein-rich) for microencapsulation of docosahexaenoic acid (DHA) oil. DHA-enriched oil emulsions were prepared using different ratios of sunflower phospholipid (SPL), proteins [whey protein concentrate (WPC), soy protein isolate (SPI), and sodium caseinate (SC)], and maltodextrin and spray-dried to obtain DHA microcapsules. The prepared DHA oil emulsions have nanosized particles. SPLs were found to affect the secondary structure of WPC, which resulted in increased exposure of the protein hydrophobic site and emulsion stability. SPL also reduced the surface tension and viscosity of the DHA oil emulsions. In vitro digestion of the spray-dried DHA microcapsules showed that they were able to effectively resist gastric proteolysis and protect their bioactivity en route to the intestine. The DHA microcapsules have a high lipid digestibility in the small intestine with a high DHA hydrolysis efficiency (74.3%), which is higher than that of commercial DHA microcapsules.
    Matched MeSH terms: Whey Proteins/chemistry*
  5. Baba WN, Mudgil P, Kamal H, Kilari BP, Gan CY, Maqsood S
    J Dairy Sci, 2021 Feb;104(2):1364-1377.
    PMID: 33309363 DOI: 10.3168/jds.2020-19271
    This study explores the inhibitory properties of camel whey protein hydrolysates (CWPH) toward α-amylase (AAM) and α-glucosidase (AG). A general full factorial design (3 × 3) was applied to study the effect of temperature (30, 37, and 45°C), time (120, 240, and 360 min), and enzyme (pepsin) concentration (E%; 0.5, 1, and 2%). The results showed that maximum degree of hydrolysis was obtained when hydrolysis was carried out at higher temperature (45°C; P < 0.05), compared with lower temperatures of 30 and 37°C. Electrophoretic pattern displays degradation of all protein bands upon hydrolysis by pepsin at various hydrolysis conditions applied. All the 27 CWPH generated showed significant AAM and AG inhibitory potential as indicated by their lower IC50 values (mg/mL) compared with intact whey proteins. In total 196 peptides were identified from selected hydrolysates and 15 potential peptides (PepSite score > 0.8; http://pepsite2.russelllab.org/) were explored via in silico approach. Novel peptides PAGNFLMNGLMHR, PAVACCLPPLPCHM, MLPLMLPFTMGY, and PAGNFLPPVAAAPVM were identified as potential inhibitors for both AAM and AG due to their high number of binding sites and highest binding probability toward the target enzymes. CCGM and MFE, as well as FCCLGPVPP were identified as AG and AAM inhibitory peptides, respectively. This is the first study that reports novel AG and AAM inhibitory peptides from camel whey proteins. The future direction for this research involves synthesis of these potential AG and AAM inhibitory peptides in a pure form and investigate their antidiabetic properties in the in vitro, as well as in vivo models. Thus, CWPH can be considered for potential applications in glycaemic regulation.
    Matched MeSH terms: Whey Proteins/chemistry*
  6. Botteman M, Detzel P
    Ann Nutr Metab, 2015;66 Suppl 1:26-32.
    PMID: 25925338 DOI: 10.1159/000370222
    BACKGROUND: Atopic dermatitis (AD) is one of the most common skin conditions among infants. Proteins found in cow's milk formula (CMF) have been found to be attributable to heightened AD risk, particularly in infants with familial AD heredity. Previous studies have suggested that intervention with partially hydrolyzed formula in nonexclusively breastfed infants can have a protective effect against AD development.

    OBJECTIVE: The aim of the present study was to compare the estimates of the economic impact of reducing the AD incidence by feeding a partially hydrolyzed whey-based formula (PHF-W) instead of a standard CMF to high-risk nonexclusively breastfed urban infants for the first 17 weeks of life in the Philippines, Malaysia, and Singapore.

    METHODS: In each country, a mathematical model simulated AD incidence and burden from birth to 6 years of age of using PHF-W versus CMF in the target population using data from the German Infant Nutritional Intervention study. The models integrated literature, current cost and market data, and expert clinician opinion. Modeled outcomes included AD risk reduction, time spent after AD diagnosis, AD symptom-free days, quality-adjusted life years (QALYs), and costs (direct and indirect). Outcomes were discounted at 3% per year. Costs were expressed in USD.

    RESULTS: Feeding high-risk infants PHF-W instead of CMF resulted in an estimated absolute 14% (95% CI 1-24) AD risk reduction, a 0.69-year (95% CI 0.25-1.13) reduction in the time spent after AD diagnosis per child, reductions of 16-38 AD days, and gains in 0.02-0.04 QALYs, depending on the country. The per-child AD-related 6-year cost-saving estimates of feeding high-risk infants with PHF-W versus CMF were USD 739 in Singapore, USD 372 in Malaysia, and USD 237 in the Philippines.

    Matched MeSH terms: Whey Proteins/chemistry*
  7. Hussein FA, Chay SY, Ghanisma SBM, Zarei M, Auwal SM, Hamid AA, et al.
    J Dairy Sci, 2020 Mar;103(3):2053-2064.
    PMID: 31882211 DOI: 10.3168/jds.2019-17462
    We evaluated the acute (single-dose) and subacute (repeated-dose) oral toxicity of alcalase-hydrolyzed whey protein concentrate. Our acute study revealed no death or treatment-related complications, and the median lethal dose of whey protein concentrate hydrolysate was >2,500 mg/kg. In the subacute study, when the hydrolysate was fed at 3 different concentrations (200, 400, and 800 mg/kg), no groups showed toxicity changes compared with controls. Then, whey protein concentrate hydrolysate was orally administered to spontaneously hypertensive rats. Results revealed significant reductions in blood pressure in a dose-dependent manner, and dosing at 400 mg/kg led to significant blood pressure reduction (-47.8 mm Hg) compared with controls (blood pressure maintained) and the findings of previous work (-21 mm Hg). Eight peptides-RHPEYAVSVLLR, GGAPPAGRL, GPPLPRL, ELKPTPEGDL, VLSELPEP, DAQSAPLRVY, RDMPIQAF, and LEQVLPRD-were sequentially identified and characterized. Of the peptides, VLSELPEP and LEQVLPRD showed the most prominent in vitro angiotensin-I converting enzyme inhibition with half-maximal inhibitory concentrations of 0.049 and 0.043 mM, respectively. These findings establish strong evidence for the in vitro and in vivo potential of whey protein concentrate hydrolysate to act as a safe, natural functional food ingredient that exerts antihypertensive activity.
    Matched MeSH terms: Whey Proteins/chemistry
  8. Jain A, Sharma G, Ghoshal G, Kesharwani P, Singh B, Shivhare US, et al.
    Int J Pharm, 2018 Jul 30;546(1-2):97-105.
    PMID: 29715533 DOI: 10.1016/j.ijpharm.2018.04.061
    The work entails a novel strategy of formulating the lycopene loaded whey protein isolate nanoparticles (LYC-WPI-NPs) solely using the rational blend of biomacromolecule without using equipment-intensive techniques. The LYC-WPI-NPs were fabricated as a substantial drug delivery platform, with maximum entrapment, spatial and controlled release manners, exceptional plasma concentration, and perspective for discrepancy delivery of therapeutics. Prepared nano-formulations were measured in ultra-fine size (100-350 nm) with sphere-shaped. The percent lycopene entrapment of prepared LYC-WPI-NPs was estimated in the range to 50 and 65%. In vitro percent cumulative release study demonstrated deaden and extended release i.e. approximately 75% following 16th h. The in vitro percent cell survival (cytotoxicity study) of prepared nanoparticles was evaluated against MCF-7 breast cancer cells by MTT based colorimetric assay. Sub-cellular localization of lycopene when delivered by LYC-WPI-NPs was assessed by HPLC (high performance liquid chromatography). The WPI-NPs enhance the oral bioavailability of lycopene by controlling its release from nano-formulation and facilitating its absorption through lymphatic pathways. Prophylactic anticancer efficacy of LYC-WPI-NPs was evaluated thereafter on experimentally induced breast cancer animal model. Conclusively, it may quite reasonable that lycopene loaded protein nanoparticles are competent to improve the biopharmaceutical attributes of lycopene and demonstrated prophylactic anticancer activity, decrease tumor proliferation and increase the survival rate of treated animals, thus signifying their feasible usefulness in cancer therapeutic and intervention.
    Matched MeSH terms: Whey Proteins/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links