Displaying all 6 publications

Abstract:
Sort:
  1. Ithoi I, Ahmad AF, Mak JW, Nissapatorn V, Lau YL, Mahmud R
    PMID: 22299400
    Seven stains were studied to determine the best color and contrast for staining the developmental stages of free living pathogenic Acanthamoeba and Naegleria species. The acid-fast bacilli stain (AFB) produced a blue color without contrast; trichrome-eosin and modified Field's showed various color contrasts; Giemsa, iron-hematoxylin, modified AFB and Gram produced only one color which distinguished the nucleus, nucleolus, cytoplasm, food- and water-vacuoles. The motile organs (acanthopodia, pseudopodia, lobopodia and flagella) were also clearly differentiated but produced a similar color as the cytoplasm. These motile organelles were first induced by incubating at 37 degrees C for at least 15 minutes and then fixing with methanol in order to preserve the protruding morphology prior to staining. The trichrome-eosin and iron-hematoxylin stains showed good color contrast for detecting all three stages, the trophozoite, cyst and flagellate; Giemsa and Gram stained the trophozoite and flagellate stages; the modified Field's and modified AFB stains stained only the trophozoite stage. Depending on the purpose, all these stains (except the AFB stain) can be used to identify the developmental stages of Acanthamoeba and Naegleria for clinical, epidemiological or public health use.
    Matched MeSH terms: Acanthamoeba/growth & development*
  2. Mohd Hussain RH, Ishak AR, Abdul Ghani MK, Ahmed Khan N, Siddiqui R, Shahrul Anuar T
    J Water Health, 2019 Oct;17(5):813-825.
    PMID: 31638031 DOI: 10.2166/wh.2019.214
    This study aimed to identify the Acanthamoeba genotypes and their pathogenic potential in five recreational hot springs in Peninsular Malaysia. Fifty water samples were collected between April and September 2018. Physical parameters of water quality were measured in situ while chemical and microbiological analyses were performed in the laboratory. All samples were filtered through the nitrocellulose membrane and tested for Acanthamoeba using both cultivation and polymerase chain reaction (PCR) by targeting the 18S ribosomal RNA gene. The pathogenic potential of all positive isolates was identified using thermo- and osmotolerance tests. Thirty-eight (76.0%) samples were positive for Acanthamoeba. Water temperature (P = 0.035), chemical oxygen demand (P = 0.026), sulphate (P = 0.002) and Escherichia coli (P < 0.001) were found to be significantly correlated with the presence of Acanthamoeba. Phylogenetic analysis revealed that 24 samples belonged to genotype T4, nine (T15), two (T3) and one from each genotype T5, T11 and T17. Thermo- and osmotolerance tests showed that 6 (15.79%) of the Acanthamoeba strains were highly pathogenic. The existence of Acanthamoeba in recreational hot springs should be considered as a health threat among the public especially for high-risk people. Periodic surveillance of hot spring waters and posting warning signs by health authorities is recommended to prevent disease related to pathogenic Acanthamoeba.
    Matched MeSH terms: Acanthamoeba/growth & development*
  3. Rain AN, Radzan T, Sajiri S, Mak JW
    PMID: 9279996
    In vitro sensitivity of Acanthamoeba castellani was tested to three drugs: Chloroquine, ivermectin and fungizone (amphotericin B). Sensitivity was demonstrated to the latter two compounds but not to chloroquine. Thus ivermectin and amphotericin B show promise as therapeutic agents against this parasite.
    Matched MeSH terms: Acanthamoeba/growth & development
  4. Init I, Lau YL, Arin Fadzlun A, Foead AI, Neilson RS, Nissapatorn V
    Trop Biomed, 2010 Dec;27(3):566-77.
    PMID: 21399599 MyJurnal
    This study reports the detection of Acanthamoeba and Naegleria species in 14 swimming pools around Petaling Jaya and Kuala Lumpur, Malaysia. Sampling was carried out at 4 sites (the platforms (P), wall (W), 1 meter from the wall (1) and middle (2)) of each swimming pool. These free living amoebae (FLA) were detected under light and inverted microscopes after being cultured on the surface of non-nutrient agar lawned with Escherichia coli. Acanthamoeba species were detected in higher number of culture plates from all sampling sites of all the swimming pools. While Naegleria, were detected in fewer culture plates at 3 sampling sites (absent at site P) of 8 swimming pools. This suggested that the thick double-walled cysts of Acanthamoeba were more resistant, thus remaining viable in the dry-hot areas of the platforms and in chlorinated water of the swimming pools whereas Naegleria cysts, that are fragile and susceptible to desiccation, preferred watery or moist areas for growth and proliferation. The prevalence of both FLA was highest at site W (76.2%), followed by site 1 (64.7%), lowest at site 2 (19.4%), and could be detected at all 3 sampling levels (top, middle and bottom) of these 3 sites. The surface of site W might act as a bio-film that accumulated all kinds of microbes providing sufficient requirement for the FLA to develop and undergo many rounds of life cycles as well as moving from top to bottom in order to graze food. Other factors such as human activities, the circulating system which was fixed at all swimming pools, blowing wind which might carry the cysts from surroundings and the swimming flagellate stage of Naegleria could also contribute to the distribution of the FLA at these sampling sites. Both FLA showed highest growth (80.4%) at room temperature (25-28 ºC) and lesser (70.0%) at 37 ºC which might be due to the overgrowth of other microbes (E. coli, fungi, algae, etc). While at 44 ºC, only Acanthamoeba species could survive thus showing that our swimming pools are free from potentially pathogenic Naegleria species. However, further study is needed in order to confirm the virulence levels of these amoebae isolates.
    Matched MeSH terms: Acanthamoeba/growth & development
  5. Ibrahim MA, Yusof MS, Amin NM
    Molecules, 2014 Apr 22;19(4):5191-204.
    PMID: 24759076 DOI: 10.3390/molecules19045191
    Thiourea derivatives display a broad spectrum of applications in chemistry, various industries, medicines and various other fields. Recently, different thiourea derivatives have been synthesized and explored for their anti-microbial properties. In this study, four carbonyl thiourea derivatives were synthesized and characterized, and then further tested for their anti-amoebic properties on two potential pathogenic species of Acanthamoeba, namely A. castellanii (CCAP 1501/2A) and A. polyphaga (CCAP 1501/3A). The results indicate that these newly-synthesized thiourea derivatives are active against both Acanthamoeba species. The IC50 values obtained were in the range of 2.39-8.77 µg·mL⁻¹ (9.47-30.46 µM) for A. castellanii and 3.74-9.30 µg·mL⁻¹ (14.84-31.91 µM) for A. polyphaga. Observations on the amoeba morphology indicated that the compounds caused the reduction of the amoeba size, shortening of their acanthopodia structures, and gave no distinct vacuolar and nuclear structures in the amoeba cells. Meanwhile, fluorescence microscopic observation using acridine orange and propidium iodide (AOPI) staining revealed that the synthesized compounds induced compromised-membrane in the amoeba cells. The results of this study proved that these new carbonyl thiourea derivatives, especially compounds M1 and M2 provide potent cytotoxic properties toward pathogenic Acanthamoeba to suggest that they can be developed as new anti-amoebic agents for the treatment of Acanthamoeba keratitis.
    Matched MeSH terms: Acanthamoeba/growth & development
  6. Siddiqui R, Aqeel Y, Khan NA
    Antimicrob Agents Chemother, 2016 11;60(11):6441-6450.
    PMID: 27600042 DOI: 10.1128/AAC.00686-16
    For the past several decades, there has been little improvement in the morbidity and mortality associated with Acanthamoeba keratitis and Acanthamoeba encephalitis, respectively. The discovery of a plethora of antiacanthamoebic compounds has not yielded effective marketed chemotherapeutics. The rate of development of novel antiacanthamoebic chemotherapies of translational value and the lack of interest of the pharmaceutical industry in developing such chemotherapies have been disappointing. On the other hand, the market for contact lenses/contact lens disinfectants is a multi-billion-dollar industry and has been successful and profitable. A better understanding of drugs, their targets, and mechanisms of action will facilitate the development of more-effective chemotherapies. Here, we review the progress toward phenotypic drug discovery, emphasizing the shortcomings of useable therapies.
    Matched MeSH terms: Acanthamoeba/growth & development
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links