METHODS: We studied the systematic use of SBA with a low profile, non-slip element device prior to DCB angioplasty in an unselected, non-randomized patient population. This prospective, all-comers study enrolled patients with de novo lesions as well as in-stent restenotic lesions in bare metal stents (BMS-ISR) and drug-eluting stents (DES-ISR). The primary endpoint was the target lesion failure (TLF) rate at 9 months (ClinicalTrials.gov Identifier NCT02554292).
RESULTS: A total of 481 patients (496 lesions) were recruited to treat de novo lesions (78.4%, 377), BMS-ISR (4.0%, 19), and DES-ISR (17.6%, 85). Overall risk factors were acute coronary syndrome (ACS, 20.6%, 99), diabetes mellitus (46.8%, 225), and atrial fibrillation (8.5%, 41). Average lesion lengths were 16.7 ± 10.4 mm in the de novo group, and 20.1 ± 8.9 mm (BMS-ISR) and 16.2 ± 9.8 mm (DES-ISR) in the ISR groups. Scoring balloon diameters were 2.43 ± 0.41 mm (de novo), 2.71 ± 0.31 mm (BMS-ISR), and 2.92 ± 0.42 mm (DES-ISR) whereas DCB diameters were 2.60 ± 0.39 mm (de novo), 3.00 ± 0.35 mm (BMS-ISR), and 3.10 ± 0.43 mm (DES-ISR), respectively. The overall accumulated TLF rate of 3.0% (14/463) was driven by significantly higher target lesion revascularization rates in the BMS-ISR (5.3%, 1/19) and the DES-ISR group (6.0%, 5/84). In de novo lesions, the TLF rate was 1.1% (4/360) without differences between calcified and non-calcified lesions (p = 0.158) and small vs. large reference vessel diameters with a cutoff value of 3.0 mm (p = 0.901).
CONCLUSIONS: The routine use of a non-slip element scoring balloon catheter to prepare lesions suitable for drug-coated balloon angioplasty is associated with high procedural success rates and low TLF rates in de novo lesions.
BACKGROUND: Data regarding the performance of a DCB-only approach, especially in patients with previously untreated de-novo coronary artery disease (CAD), are still limited.
METHODS: This study was conducted as an international, multicenter registry primarily enrolling patients with de-novo CAD. However, it was also possible to include patients with in-stent restenosis (ISR). The primary endpoint was the rate of clinically driven target lesion revascularization (TLR) after 9 months.
RESULTS: A total of 1,025 patients with a mean age of 64.0 ± 11.2 years were enrolled. The majority of treated lesions were de-novo (66.9%), followed by drug-eluting-stent ISR (DES-ISR; 22.6%) and bare-metal-stent ISR (BMS-ISR; 10.5%). The TLR rate was lower in the de-novo group (2.3%) when compared to BMS- (2.9%) and DES-ISR (5.8%) (P = 0.049). Regarding MACE, there was a trend toward fewer events in the de-novo group (5.6%) than in the BMS- (7.8%) and DES-ISR cohort (9.6%) (P = 0.131). Subgroup analyses revealed that lesion type (95% CI 1.127-6.587); P = 0.026) and additional stent implantation (95% CI 0.054-0.464; P = 0.001) were associated with higher TLR rates.
CONCLUSIONS: Our results show that DCB-only angioplasty of de-novo coronary lesions is associated with low MACE and TLR rates. Thus, DCBs appear to be an attractive alternative for the interventional, stentless treatment of suitable de-novo coronary lesions.
METHODS: The present study included 812 patients in the ABSORB EXTEND study in which a total of 215 diabetic patients were treated with Absorb BVS. In addition, 882 diabetic patients treated with EES in pooled data from the SPIRIT clinical program (SPIRIT II, SPIRIT III and SPIRIT IV trials) were used for comparison by applying propensity score matching using 29 different variables. The primary endpoint was ischemia driven major adverse cardiac events (ID-MACE), including cardiac death, myocardial infarction (MI), and ischemia driven target lesion revascularization (ID-TLR).
RESULTS: After 2 years, the ID-MACE rate was 6.5% in the Absorb BVS vs. 8.9% in the Xience group (P = 0.40). There was no difference for MACE components or definite/probable device thrombosis (HR: 1.43 [0.24,8.58]; P = 0.69). The occurrence of MACE was not different for both diabetic status (insulin- and non-insulin-requiring diabetes) in all time points up to the 2-year follow-up for the Absorb and Xience groups.
CONCLUSION: In this largest ever patient-level pooled comparison on the treatment of diabetic patients with BRS out to two years, individuals with diabetes treated with the Absorb BVS had a similar rate of MACE as compared with diabetics treated with the Xience EES. © 2017 Wiley Periodicals, Inc.
METHOD: We will search PubMed/MEDLINE, EMBASE, ClinicalTrials.gov, WHO International Clinical Trials Registry, CINAHL Database, and the Cochrane Library using a predefined search strategy. Other sources of literature will include proceedings from the European Society of Cardiology, the American College of Cardiology, the American Heart Association, the EUROPCR, and the ProQuest Dissertations and Theses Database. We will include data from observational studies (case-control and cohort study design) and randomized control trials (that have investigated the relationship of D2B time and clinical outcome(s) in an adult (older than 18) STEMI population). Mortality (cardiac related and all-cause) and incidence heart failure (HF) have been prioritized as the primary outcomes. All eligible studies will be assessed for risk of bias using the Risk Of Bias in Non-randomized Studies - of Interventions tool. The Grading of Recommendations, Assessment, and Evaluation (GRADE) framework will be used to report the quality of evidence and strength of recommendations. We will proceed to analyze the data quantitatively if the pre-specified conditions are satisfied.
DISCUSSION: Recent discussion on the negative findings of improved D2B delay over time being unrelated to better STEMI outcomes at the population level has reminded us of an important knowledge gap we have on this domain. This systematic review will serve to address some of these key questions not previously examined. Answers to these questions could clarify the controversies and offer empirical support for or against the suggested hypotheses.
SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42015026069.