Displaying all 6 publications

Abstract:
Sort:
  1. Imran FH, Yong CK, Das S, Huei YL
    Anat Cell Biol, 2016 Dec;49(4):273-280.
    PMID: 28127502 DOI: 10.5115/acb.2016.49.4.273
    Superficial temporal artery (STA) based pedicled fascial flap plays a pivotal role in ear reconstruction for microtia patients. There is paucity of literature on the anatomy of the STA in microtia patients. The present study aimed to describe any possible anatomical variations seen in the STA of patients afflicted with microtia. Pre-operative carotid computer tomographic angiography images of patients under the microtia database of Plastic and Reconstructive Surgery Unit at a tertiary medical centre were selected and 3-dimensionally reconstructed. Measurements were made on the 3D reconstructed computed tomographic angiography images of the STA on both the sides of the microtic ear and the non-microtic ear to assess its various anatomical parameters. We managed to obtain a total of 39 computed tomographic angiography images of STAs for analysis. There was a significant difference in the number of main branches of STA between the two groups (P=0.006). The proportion of ears with 2 main branches was higher in the non-microtia group (89.5%) compared to the microtia group (45.0%). A significant difference was found in the STA diameter between the two groups (P=0.012). The mean diameter of STA in the non-microtia group was larger by 0.4 mm. Furthermore, the median angle of STA was larger on the side of the non-microtic ears compared to that of microtic ears by 24.5°, with a P-value of 0.011. The results of the study may be of clinical importance while planning and performing ear reconstructive surgeries using STA based pedicled fascial flaps.
    Matched MeSH terms: Congenital Microtia
  2. Ishak MF, See GB, Hui CK, Abdullah Ab, Saim Lb, Saim Ab, et al.
    Int J Pediatr Otorhinolaryngol, 2015 Oct;79(10):1634-9.
    PMID: 26250439 DOI: 10.1016/j.ijporl.2015.06.034
    This study aimed to isolate, culture-expand and characterize the chondrocytes isolated from microtic cartilage and evaluate its potential as a cell source for ear cartilage reconstruction. Specific attention was to construct the auricular cartilage tissue by using fibrin as scaffold.
    Matched MeSH terms: Congenital Microtia/therapy*
  3. Asma A, Roslenda AR, Fadzilah I, Mazita A, Marina MB, Ab Aziz A
    Med J Malaysia, 2017 04;72(2):135-137.
    PMID: 28473682 MyJurnal
    A six-month-old baby with congenital patent ductus arteriosus (PDA), bilateral microtia and canal atresia was referred for hearing assessment. The audiology assessment revealed bilateral profound hearing loss, which is atypical for a case of pure canal atresia. Imaging was performed much earlier than usual and, as suspected, the patient also had bilateral severe inner ear anomaly. It is extremely rare for a person to have both external and inner ear anomaly because of the different embryological origin. The only suitable hearing rehabilitation option for this kind of patients is brainstem implant. However, the parents had opted for sign language as a form of communication.
    Matched MeSH terms: Congenital Microtia/complications*
  4. Goh BS, Che Omar SN, Ubaidah MA, Saim L, Sulaiman S, Chua KH
    Acta Otolaryngol, 2017 Apr;137(4):432-441.
    PMID: 27900891 DOI: 10.1080/00016489.2016.1257151
    CONCLUSION: In conclusion, these result showed HADSCs could differentiate into chondrocytes-like cells, dependent on signaling induced by TGF-β3 and chondrocytes. This is a promising result and showed that HADSCs is a potential source for future microtia repair. The technique of co-culture is a positive way forward to assist the microtia tissue.

    OBJECTIVE: Reconstructive surgery for the repair of microtia still remains the greatest challenge among the surgeons. Its repair is associated with donor-site morbidity and the degree of infection is inevitable when using alloplastic prosthesis with uncertain long-term durability. Thus, human adipose derived stem cells (HADSCs) can be an alternative cell source for cartilage regeneration. This study aims to evaluate the chondrogenic potential of HADSCs cultured with transforming growth factor-beta (TGF-β) and interaction of auricular chondrocytes with HADSCs for new cartilage generation.

    METHODS: Multi-lineages differentiation features of HADSCs were monitored by Alcian Blue, Alizarin Red, and Oil Red O staining for chondrogenic, adipogenic, and osteogenic differentiation capacity, respectively. Further, HADSCs alone were culture in medium added with TGF-β3; and human auricular chondrocytes were interacted indirectly in the culture with and without TGF-βs for up to 21 days, respectively. Cell morphology and chondrogenesis were monitored by inverted microscope. For cell viability, Alamar Blue assay was used to measure the cell viability and the changes in gene expression of auricular chondrocyte markers were determined by real-time polymerase chain reaction analysis. For the induction of chondrogenic differentiation, HADSCs showed a feature of aggregation and formed a dense matrix of proteoglycans. Staining results from Alizirin Red and Oil Red O indicated the HADSCs also successfully differentiated into adipogenic and osteogenic lineages after 21 days.

    RESULTS: According to a previous study, HADSCs were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen. The results showed HADSCs test groups (cultured with TGF-β3) displayed chondrocytes-like cells morphology with typical lacunae structure compared to the control group without TGF-β3 after 2 weeks. Additionally, the HADSCs test groups increased in cell viability; an increase in expression of chondrocytes-specific genes (collagen type II, aggrecan core protein, SOX 9 and elastin) compared to the control. This study found that human auricular chondrocytes cells and growth factor had a positive influence in inducing HADSCs chondrogenic effects, in terms of chondrogenic differentiate of feature, increase of cell viability, and up-regulated expression of chondrogenic genes.

    Matched MeSH terms: Congenital Microtia/surgery
  5. Asma A, Ubaidah MA, Hasan SS, Wan Fazlina WH, Lim BY, Saim L, et al.
    PMID: 24427576 DOI: 10.1007/s12070-013-0621-2
    Bone anchored hearing aid (Baha) implant is an option for patient with canal atresia, single sided deafness(SSD) and chronically discharging ears despite treatments. This retrospective study was conducted from 2001 to 2011 to evaluate the surgical outcome of Baha implant surgery. Thirty-three patients were identified during this study period. Their age at implantation ranged from 5 to 40 years. Of 33 patients, 29 (87.9 %) patients had bilateral microtia and canal atresia, 3 (9.1 %) patients had unilateral microtia and canal atresia and 1 (3.0 %) patients have SSD following labyrinthitis. One patient (3.2 %) had major complication which is lost of implant due to failure of osseointegration. Soft tissue reactions were seen 7 patients (21.1 %). Of these 7 patients, 4 patients required 3-4 procedures as day care operation for excision of the skin overgrowth surrounding the abutment. Recurrent antibiotic treatment was required in 3 patients (9.7 %). None of our patient had history of intraoperative or peri-operative complication following Baha surgery. The commonest complications are local infection and inflammation at the implant site. None of our patient had history of intraoperative or peri-operative complication following Baha implant surgery.
    Matched MeSH terms: Congenital Microtia
  6. Ishak MF, Chua KH, Asma A, Saim L, Aminuddin BS, Ruszymah BH, et al.
    Int J Pediatr Otorhinolaryngol, 2011 Jun;75(6):835-40.
    PMID: 21543123 DOI: 10.1016/j.ijporl.2011.03.021
    This study was aimed to see the difference between chondrocytes from normal cartilage compared to chondrocytes from microtic cartilage. Specific attentions were to characterize the growth of chondrocytes in terms of cell morphology, growth profile and RT-PCR analysis.
    Matched MeSH terms: Congenital Microtia
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links