Displaying all 9 publications

Abstract:
Sort:
  1. Tiong KH, Mohammed Yunus NA, Yiap BC, Tan EL, Ismail R, Ong CE
    PLoS One, 2014;9(1):e86230.
    PMID: 24475091 DOI: 10.1371/journal.pone.0086230
    Human cytochrome P450 2A6 (CYP2A6) is a highly polymorphic isoform of CYP2A subfamily. Our previous kinetic study on four CYP2A6 allelic variants (CYP2A6 15, CYP2A6 16, CYP2A6 21 and CYP2A6 22) have unveiled the functional significance of sequence mutations in these variants on coumarin 7-hydroxylation activity. In the present study, we further explored the ability of a typical CYP2A6 inhibitor, 8-methoxypsoralen (8-MOP), in inhibition of these alleles and we hypothesized that translational mutations in these variants are likely to give impact on 8-MOP inhibitory potency. The CYP2A6 variant and the wild type proteins were subjected to 8-MOP inhibition to yield IC50 values. In general, a similar trend of change in the IC50 and Km values was noted among the four mutants towards coumarin oxidation. With the exception of CYP2A6 16, differences in IC50 values were highly significant which implied compromised interaction of the mutants with 8-MOP. Molecular models of CYP2A6 were subsequently constructed and ligand-docking experiments were performed to rationalize experimental data. Our docking study has shown that mutations have induced enlargement of the active site volume in all mutants with the exception of CYP2A6 16. Furthermore, loss of hydrogen bond between 8-MOP and active site residue Asn297 was evidenced in all mutants. Our data indicate that the structural changes elicited by the sequence mutations could affect 8-MOP binding to yield differential enzymatic activities in the mutant CYP2A6 proteins.
    Matched MeSH terms: Cytochrome P-450 CYP2A6
  2. Tiong KH, Yiap BC, Tan EL, Ismail R, Ong CE
    Drug Metab. Dispos., 2010 May;38(5):745-51.
    PMID: 20139165 DOI: 10.1124/dmd.109.031054
    Variation in CYP2A6 levels and activity can be attributed to genetic polymorphism and, thus, functional characterization of allelic variants is necessary to define the importance of CYP2A6 polymorphism in humans. The aim of the present study was to investigate the reported alleles CYP2A6*15, CYP2A6*16, CYP2A6*21, and CYP2A6*22, in terms of the functional consequences of their mutations on the enzyme catalytic activity. With use of the wild-type CYP2A6 cDNA as template, site-directed mutagenesis was performed to introduce nucleotide changes encoding K194E substitution in CYP2A6*15, R203S substitution in CYP2A6*16, K476R substitution in CYP2A6*21, and concurrent D158E and L160I substitutions in CYP2A6*22. Upon sequence verification, the CYP2A6 wild-type and mutant constructs were individually coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. A kinetic study using a coumarin 7-hydroxylase assay indicated that CYP2A6*15 exhibited higher V(max) than the wild type, whereas all mutant constructs, except for variant CYP2A6*16, exhibited higher K(m) values. Analysis of the V(max)/K(m) ratio revealed that all mutants demonstrated 0.85- to 1.05-fold differences from the wild type, with the exception of variant CYP2A6*22, which only portrayed 39% of the wild-type intrinsic clearance. These data suggested that individuals carrying the CYP2A6*22 allele are likely to have lower metabolism of CYP2A6 substrate than individuals expressing CYP2A6*15, CYP2A6*16, CYP2A6*21, and the wild type.
    Matched MeSH terms: Cytochrome P-450 CYP2A6
  3. Tiong KH, Yiap BC, Tan EL, Ismail R, Ong CE
    Xenobiotica, 2010 Jul;40(7):458-66.
    PMID: 20402563 DOI: 10.3109/00498251003786749
    1. The effect of flavonoids on coumarin 7-hydroxylation, an activity marker of an important human liver cytochrome P450 isoform, cytochrome P450 2A6 (CYP2A6), was investigated in this study. 2. Coumarin 7-hydroxylase activity was measured fluorometrically in reaction mixtures containing cDNA-expressed CYP2A6, nicotinamide adenine dinucleotide phosphate generating system and 10 uM coumarin, at various concentrations of flavonoids. 3. Among the 23 compounds tested, most of the active members were from flavonol group of hydroxylated flavonoids, with myricetin being the most potent inhibitor followed by quercetin, galangin, and kaempferol. 4. Further exploration of the inhibition mechanism of these compounds revealed that myricetin, galangin, and kaempferol exhibited mixed-type of inhibition pattern while quercetin was observed to exhibit competitive mode of inhibition. 5. Structure-function analyses revealed that degree of inhibition was closely related to the number and location of hydroxyl groups, glycosylation of the free hydroxyl groups, degree of saturation of the flavane nucleus as well as the presence of the alkoxylated function.
    Matched MeSH terms: Cytochrome P-450 CYP2A6
  4. Pan Y, Tiong KH, Abd-Rashid BA, Ismail Z, Ismail R, Mak JW, et al.
    J Nat Med, 2014 Apr;68(2):402-6.
    PMID: 23881640 DOI: 10.1007/s11418-013-0794-8
    Eurycomanone, an active constituent isolated from Eurycoma longifolia Jack, was examined for modulatory effects on cytochrome P450 (CYP) isoforms CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2E1 and CYP3A4 using in vitro assays. The IC50 value was determined to assess the potencies of modulation for each CYP isoform. Our results indicated that eurycomanone did not potently inhibit any of the CYP isoforms investigated, with IC50 values greater than 250 μg/ml. Hence there appears to be little likelihood of drug-herb interaction between eurycomanone or herbal products with high content of this compound and CYP drug substrates via CYP inhibition.
    Matched MeSH terms: Cytochrome P-450 CYP2A6
  5. Yusof W, Hua GS
    Toxicol. Mech. Methods, 2012 Apr;22(3):184-92.
    PMID: 22003869 DOI: 10.3109/15376516.2011.623331
    Artesunate (AS) and amodiaquine (AQ) are two prodrugs widely used as antimalarial agents and are metabolized by the CYP P450 2A6 (CYP 2A6) and CYP P450 2C8 (CYP 2C8) enzymes, respectively.
    Matched MeSH terms: Cytochrome P-450 CYP2A6
  6. Ku CS, Pawitan Y, Sim X, Ong RT, Seielstad M, Lee EJ, et al.
    Hum Mutat, 2010 Jul;31(7):851-7.
    PMID: 20506136 DOI: 10.1002/humu.21287
    Research on the role of copy number variations (CNVs) in the genetic risk of diseases in Asian populations has been hampered by a relative lack of reference CNV maps for Asian populations outside the East Asians. In this article, we report the population characteristics of CNVs in Chinese, Malay, and Asian Indian populations in Singapore. Using the Illumina Human 1M Beadchip array, we identify 1,174 CNV loci in these populations that corroborated with findings when the same samples were typed on the Affymetrix 6.0 platform. We identify 441 novel loci not previously reported in the Database of Genomic Variations (DGV). We observe a considerable number of loci that span all three populations and were previously unreported, as well as population-specific loci that are quite common in the respective populations. From this we observe the distribution of CNVs in the Asian Indian population to be considerably different from the Chinese and Malay populations. About half of the deletion loci and three-quarters of duplication loci overlap UCSC genes. Tens of loci show population differentiation and overlap with genes previously known to be associated with genetic risk of diseases. One of these loci is the CYP2A6 deletion, previously linked to reduced susceptibility to lung cancer.
    Matched MeSH terms: Cytochrome P-450 CYP2A6
  7. Ong, Chin-Eng, Yan, Pan, Tiong, Kai-Hung, Yiap, Beow-Chin, Tan, Eng-Lai, Pook, Peter, et al.
    MyJurnal
    Pharmacogenomics (or pharmacogenetics), the study of the effects of genetic differences on a person’s response to drugs, can help in optimizing drug efficacy and minimizing adverse drug reactions. Interperson difference in drug metabolism is one of the important consequences of such genetic variation. This variation is determined in part by mutations in cytochrome P450 enzymes (CYPs). IMU is part of a major collaborative research project in the area of phamacogenetics and drug metabolism. Working together with USM and UiTM, our group has, since 2000, generated useful population database on genetic polymorphism of various CYP isoforms. We have successfully genotyped three major ethnic groups, Malay, Indian and Chinese for their allelic frequency of important isoforms. These include CYP2D6, CYP2C9, CYP2C8 and CYP2A6. Data generated so far collectively have contributed to our effort in mapping and constructing genomic database for Malaysian population.
    Since early 2002, our research has been focusing on developing in vitro methods in studying the functional consequences of genetic polymorphism of CYP enzymes. Using site-directed mutagenesis, CYP mutants, carrying nucleotide changes as reported in known alleles in human populations, were generated and expressed in E. coli system, and the expressed recombinant proteins were characterized using enzyme assays to determine the functional consequences of mutations. We have established a series of HPLC (high performance liquid chromatography)-based and fluorescence-based assays to investigate CYP activities. Assays that have been developed include tolbutamide methylhydroxylase, paclitaxel 6α-hydroxylase, dextromethorphan O-demethylation, testosterone 6β-hydroxylation and coumarin 7-hydroxylase assays. These assays serve as activity markers allowing comparison of catalytic activities of mutant proteins generated. Another focus of our work is to use the developed assays as a screening tool to investigate drug-herb interactions. This was achieved by co-incubation of herbal extracts and active constituents with the probe substrates in the assays followed by characterization of the kinetic behaviors of the enzymes involved using various pharmacokinetic parameters such as Km, Vmax, IC50 and Ki. This work is currently carried out with collaboration from the Institute for Medical Research (IMR) and is supported by MOSTI’s eScienceFund under RM9. It is envisaged that this screening work will give us insights on the potential of the commonly used herbs to cause pharmacokinetic interactions with other drug substrates, and allow us to elucidate the mechanisms involved in the interactions.
    Matched MeSH terms: Cytochrome P-450 CYP2A6
  8. Veiga MI, Asimus S, Ferreira PE, Martins JP, Cavaco I, Ribeiro V, et al.
    Eur J Clin Pharmacol, 2009 Apr;65(4):355-63.
    PMID: 18979093 DOI: 10.1007/s00228-008-0573-8
    AIM: The aim of this study was to obtain pharmacogenetic data in a Vietnamese population on genes coding for proteins involved in the elimination of drugs currently used for the treatment of malaria and human immunodeficiency virus/acquired immunodeficiency syndrome.

    METHOD: The main polymorphisms on the cytochrome P450 (CYP) genes, CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP3A4 and CYP3A5, and the multi-drug resistance 1 gene (MDR1) were genotyped in 78 healthy Vietnamese subjects. Pharmacokinetic metrics were available for CYP2A6 (coumarin), CYP2C19 (mephenytoin), CYP2D6 (metoprolol) and CYP3As (midazolam), allowing correlations with the determined genotype.

    RESULTS: In the CYP2 family, we detected alleles CYP2A6*4 (12%) and *5 (15%); CYP2B6*4 (8%), *6 (27%); CYP2C19*2 (31%) and *3 (6%); CYP2D6*4, *5, *10 (1, 8 and 44%, respectively). In the CYP3A family, CYP3A4*1B was detected at a low frequency (2%), whereas CYP3A5 *3 was detected at a frequency of 67%. The MDR1 3435T allele was present with a prevalence of 40%. Allele proportions in our cohort were compared with those reported for other Asian populations. CYP2C19 genotypes were associated to the S-4'-OH-mephenytoin/S-mephenytoin ratio quantified in plasma 4 h after intake of 100 mg mephenytoin. While CYP2D6 genotypes were partially reflected by the alpha-OH-metroprolol/metoprolol ratio in plasma 4 h after dosing, no correlation existed between midazolam plasma concentrations 4 h post-dose and CYP3A genotypes.

    CONCLUSIONS: The Vietnamese subjects of our study cohort presented allele prevalences in drug-metabolising enzymes that were generally comparable with those reported in other Asian populations. Deviations were found for CYP2A6*4 compared to a Chinese population (12 vs. 5%, respectively; P = 0.023), CYP2A6*5 compared with a Korean population (15 vs. <1%, respectively; P < 0.0001), a Malaysian population (1%; P < 0.0001) and a Chinese population (1%; P < 0.0001); CYP2B6*6 compared with a Korean population (27 vs. 12%; P = 0.002) and a Japanese population (16%; P = 0.021). Pharmacokinetic metrics versus genotype analysis reinforces the view that the predictive value of certain globally common variants (e.g. CYP2D6 single nucleotide polymorphisms) should be evaluated in a population-specific manner.

    Matched MeSH terms: Cytochrome P-450 CYP2A6
  9. Yusof W, Gan SH
    Clin Chim Acta, 2009 May;403(1-2):105-9.
    PMID: 19361454 DOI: 10.1016/j.cca.2009.01.032
    CYP2A6 gene encodes the principal enzyme involved in the metabolism of many drugs including artesunate. We developed a simplified duplex nested PCR method for the detection of the CYP2A61B, CYP2A62, CYP2A64, CYP2A67, CYP2A68 and CYP2A69 variant alleles highly prevalent among Malaysian population.
    Matched MeSH terms: Cytochrome P-450 CYP2A6
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links