Displaying all 3 publications

Abstract:
Sort:
  1. Jaffar N, Miyazaki T, Maeda T
    J Biomed Mater Res A, 2016 11;104(11):2873-80.
    PMID: 27390886 DOI: 10.1002/jbm.a.35827
    Biofilm formation of periodontal pathogens on teeth surfaces promotes the progression of periodontal disease. Hence, understanding the mechanisms of bacterial attachment to the dental surfaces may inform strategies for the maintenance of oral health. Although hydroxyapatite (HA) is a major calcium phosphate component of teeth, effect of biofilm formation on HA surfaces remains poorly characterized. In this study, biofilm-forming abilities by the periodontal pathogens Aggregatibacter actinomycetemcomitans Y4 and Porphyromonas gingivalis 381 were investigated on dense and porous HAs that represent enamel and dentin surfaces, respectively. These experiments showed greater biofilm formation on porous HA, but differing attachment profiles and effects of the two pathogens. Specifically, while the detachment of A. actinomycetemcomitans Y4 biofilm was observed, P. gingivalis 381 biofilm increased with time. Moreover, observations of HA morphology following formation of A. actinomycetemcomitans Y4 biofilm revealed gaps between particles, whereas no significant changes were observed in the presence of P. gingivalis 381. Finally, comparisons of calcium leakage showed only slight differences between bacterial species and HA types and may be masked by bacterial calcium uptake. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2873-2880, 2016.
    Matched MeSH terms: Dental Enamel/chemistry
  2. Ahmed SZ, Khan AS, Nasser WW, Alrushaid MA, Alfaraj ZM, Aljeshi MM, et al.
    Microsc Res Tech, 2025 Feb;88(2):595-610.
    PMID: 39501540 DOI: 10.1002/jemt.24725
    This study aimed to investigate the efficacy and durability of bioactive glass-based dental resin infiltrants. Resin infiltrants were formulated by combining photoinitiated dimethacrylate monomers with three variations of bioactive glass: 45S5 Bioglass (RIS), boron-substituted (RIB), fluoride-substituted (RIF), and pure resins (PR), whereby TOOTH group (TH) and ICON (CN) served as commercial control groups. Teeth samples were prepared, and experimental and control infiltrants were applied on demineralized human-extracted teeth. All the samples were subjected to immersion in artificial saliva and pH cycling for 30 days. The samples from another group underwent tooth brushing simulation for 9600 cycles. Following artificial saliva immersion, the samples' hardness values showed that RIB had the highest values (318.44 ± 3.83) while PR (212.52 ± 9.02) had the lowest values. After immersing into the pH cycling solution, the RIF showed the highest hardness (286.86 ± 5.11), while the lowest values for the CN (143.76 ± 3.50). After the tooth brushing simulation, the teeth samples with RIB showed maximum microhardness values (312.06 ± 16.30) and the weakest for the TH (189.60 ± 6.43). The commercial and experimental enamel resin infiltrants showed almost similar results overall, with RIB demonstrating better microhardness and comparable surface roughness. In contrast, RIF proved more resistant to pH cycling, exhibited higher microhardness, and performed better in surface roughness analysis. These findings suggest that resin infiltrant materials, especially RIF, have promising potential for effectively and esthetically managing white spot lesions.
    Matched MeSH terms: Dental Enamel/chemistry
  3. Bijle MN, Sharaf D, Bahdar MAM, Daood U, Yiu C
    J Dent, 2025 Feb;153:105500.
    PMID: 39626842 DOI: 10.1016/j.jdent.2024.105500
    OBJECTIVE(S): The aim of the study was to examine the potential of arginine (Arg)-enriched fancy waters in preventing erosive tooth wear.

    METHODS: L-arginine (2 % w/v.) was added to five commercial fancy waters: Oasis-Lemon, Oasis-Lemon Mint, Perrier-Lemon, Perrier-Grapefruit, Pellegrino-Lemon; and deionized water served as a negative control. The pH, buffer capacity of added Arg, and F- concentrations were measured. Tooth specimens were prepared and baseline volumetric assessment (T0) was conducted using micro-CT. Subsequently, the specimens were immersed in fancy waters for 72 h, kept in an incubator (37 ℃) and solutions were changed every 24 h. After the experimental cycle (T1), 3D volumetric analysis was performed, and 3D structural images were reconstructed for qualitative assessment.

    RESULTS: The pH and F- concentrations of fancy waters with Arg were significantly higher than the control (p < 0.001). The buffer capacity of added Arg with Perrier-Grapefruit was significantly higher than Oasis-Lemon, Oasis-Lemon Mint & Pellegrino-Lemon (p < 0.05), except for Perrier-Lemon (p > 0.05). At T1, the specimen volume in Oasis-Lemon Mint (+/- Arg) and Pellegrino-Lemon (control) was significantly lower than T0 (p < 0.05). At T1, the specimen volume of Oasis-Lemon Mint and Pellegrino-Lemon (control) was significantly lower than Arg-containing fancy waters (p < 0.05). Surface contrast indicating wear was evident from T0 to T1 in specimens from the Oasis-Lemon Mint (+/- Arg) and Pellegrino-Lemon (- Arg).

    CONCLUSION: Incorporating Arg in fancy waters reduces the potential of erosive tooth wear associated with these beverages.

    CLINICAL SIGNIFICANCE: Consuming fancy water beverages (flavoured sparkling/carbonated) can lead to erosive tooth wear in young people. Incorporating Arg in fancy water beverages can prevent the erosive wear potential of these beverages while alleviating the burden of oral care on individuals at risk to erosive wear.

    Matched MeSH terms: Dental Enamel/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links