Displaying all 5 publications

Abstract:
Sort:
  1. Nur Atikah I, Alimon AR, Yaakub H, Abdullah N, Jahromi MF, Ivan M, et al.
    BMC Vet Res, 2018 Nov 14;14(1):344.
    PMID: 30558590 DOI: 10.1186/s12917-018-1672-0
    BACKGROUND: The effects of the dietary oils with differing fatty acid profiles on rumen fermentation, microbial population, and digestibility in goats were investigated. In Experiment I, rumen microbial population and fermentation profiles were evaluated on 16 fistulated male goats that were randomly assigned to four treatment groups: i) control (CNT), ii) olive oil (OL), iii) palm olein oil (PO), and iv) sunflower oil (SF). In Experiment II, another group of 16 male goats was randomly assigned to the same dietary treatments for digestibility determination.

    RESULTS: Rumen ammonia concentration was higher in CNT group compared to treatment groups receiving dietary oils. The total VFA and acetate concentration were higher in SF and OL groups, which showed that they were significantly affected by the dietary treatments. There were no differences in total microbial population. However, fibre degrading bacteria populations were affected by the interaction between treatment and day of sampling. Significant differences were observed in apparent digestibility of crude protein and ether extract of treatment groups containing dietary oils compared to the control group.

    CONCLUSIONS: This study demonstrated that supplementation of different dietary oils containing different fatty acid profiles improved rumen fermentation by reducing ammonia concentration and increasing total VFA concentration, altering fibre degrading bacteria population, and improving apparent digestibility of crude protein and ether extract.

    Matched MeSH terms: Dietary Fats, Unsaturated/metabolism*
  2. Sambanthamurthi R, Sundram K, Tan Y
    Prog Lipid Res, 2000 Nov;39(6):507-58.
    PMID: 11106812
    Matched MeSH terms: Dietary Fats, Unsaturated/metabolism
  3. Md Badrul Hisham NH, Ibrahim MF, Ramli N, Abd-Aziz S
    Molecules, 2019 Jul 18;24(14).
    PMID: 31323813 DOI: 10.3390/molecules24142617
    Heavy metals from industrial effluents and sewage contribute to serious water pollution in most developing countries. The constant penetration and contamination of heavy metals into natural water sources may substantially raise the chances of human exposure to these metals through ingestion, inhalation, or skin contact, which could lead to liver damage, cancer, and other severe conditions in the long term. Biosurfactant as an efficient biological surface-active agent may provide an alternative solution for the removal of heavy metals from industrial wastes. Biosurfactants exhibit the properties of reducing surface and interfacial tension, stabilizing emulsions, promoting foaming, high selectivity, and specific activity at extreme temperatures, pH, and salinity, and the ability to be synthesized from renewable resources. This study aimed to produce biosurfactant from renewable feedstock, which is used cooking oil (UCO), by a local isolate, namely Bacillus sp. HIP3 for heavy metals removal. Bacillus sp. HIP3 is a Gram-positive isolate that gave the highest oil displacement area with the lowest surface tension, of 38 mN/m, after 7 days of culturing in mineral salt medium and 2% (v/v) UCO at a temperature of 30 °C and under agitation at 200 rpm. An extraction method, using chloroform:methanol (2:1) as the solvents, gave the highest biosurfactant yield, which was 9.5 g/L. High performance liquid chromatography (HPLC) analysis confirmed that the biosurfactant produced by Bacillus sp. HIP3 consists of a lipopeptide similar to standard surfactin. The biosurfactant was capable of removing 13.57%, 12.71%, 2.91%, 1.68%, and 0.7% of copper, lead, zinc, chromium, and cadmium, respectively, from artificially contaminated water, highlighting its potential for bioremediation.
    Matched MeSH terms: Dietary Fats, Unsaturated/metabolism*
  4. Li D, Zhang H, Hsu-Hage BH, Wahlqvist ML, Sinclair AJ
    Eur J Clin Nutr, 2001 Dec;55(12):1036-42.
    PMID: 11781668
    The aims of this study were to investigate (1) platelet phospholipid (PL) polyunsaturated fatty acid (PUFA) composition in subjects who were the Melbourne Chinese migrants, compared with those who were the Melbourne Caucasians and (2) the relationship between platelet PL PUFA and intake of fish, meat and PUFA.
    Matched MeSH terms: Dietary Fats, Unsaturated/metabolism
  5. Kuah MK, Jaya-Ram A, Shu-Chien AC
    PMID: 27421235 DOI: 10.1016/j.cbpa.2016.07.007
    There is a lack of understanding on how the environment and trophic niche affect the capability of long-chain polyunsaturated fatty acids (LC-PUFA) in freshwater carnivorous teleost. In this present study, we isolated and functionally characterised a fatty acyl desaturase (Fads) from the striped snakehead Channa striata. Sequence comparison and phylogenetic analysis suggested a Fads2 protein that is closely related to previously characterised Fads2 proteins from freshwater carnivorous and marine herbivorous fish species. We further demonstrated the capacity of Δ6 and Δ5 desaturation activities for this particular desaturase, with highest activities towards the conversion of omega-3 (n-3) polyunsaturated fatty acids (PUFA). Low Δ4 desaturation activity was also detected, although the significance of this at a physiological level remains to be studied. The expression of this striped snakehead Δ6/Δ5 fads2 gene was highest in brain, followed by liver and intestine. In liver, diet fortified with high LC-PUFA concentration impeded the expression of Δ6/Δ5 fads2 gene compared to vegetable oil (VO) based diets. The discovery of Δ6/Δ5 Fads2 desaturase here complements the previous discovery of a Δ4 Fads2 desaturase and an Elovl5 elongase, lending proof to the existence of all the required enzymatic machinery to biosynthesise LC-PUFA from C18 PUFA in a freshwater carnivorous species.
    Matched MeSH terms: Dietary Fats, Unsaturated/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links