Displaying all 11 publications

Abstract:
Sort:
  1. Khosravi Y, Bunte RM, Chiow KH, Tan TL, Wong WY, Poh QH, et al.
    Gut Microbes, 2016;7(1):48-53.
    PMID: 26939851 DOI: 10.1080/19490976.2015.1119990
    Helicobacter pylori have been shown to influence physiological regulation of metabolic hormones involved in food intake, energy expenditure and body mass. It has been proposed that inducing H. pylori-induced gastric atrophy damages hormone-producing endocrine cells localized in gastric mucosal layers and therefore alter their concentrations. In a recent study, we provided additional proof in mice under controlled conditions that H. pylori and gut microbiota indeed affects circulating metabolic gut hormones and energy homeostasis. In this addendum, we presented data from follow-up investigations that demonstrated H. pylori and gut microbiota-associated modulation of metabolic gut hormones was independent and precedes H. pylori-induced histopathological changes in the gut of H. pylori-infected mice. Thus, H. pylori-associated argumentation of energy homeostasis is not caused by injury to endocrine cells in gastric mucosa.
    Matched MeSH terms: Helicobacter pylori/metabolism*
  2. Lee WC, Goh KL, Loke MF, Vadivelu J
    Helicobacter, 2017 Feb;22(1).
    PMID: 27258354 DOI: 10.1111/hel.12321
    Helicobacter pylori colonizes almost half of the human population worldwide. H. pylori strains are genetically diverse, and the specific genotypes are associated with various clinical manifestations including gastric adenocarcinoma, peptic ulcer disease (PUD), and nonulcer dyspepsia (NUD). However, our current knowledge of the H. pylori metabolism is limited. To understand the metabolic differences among H. pylori strains, we investigated four Malaysian H. pylori clinical strains, which had been previously sequenced, and a standard strain, H. pylori J99, at the phenotypic level.
    Matched MeSH terms: Helicobacter pylori/metabolism*
  3. Wong EHJ, Ng CG, Goh KL, Vadivelu J, Ho B, Loke MF
    Sci Rep, 2018 01 23;8(1):1409.
    PMID: 29362474 DOI: 10.1038/s41598-018-19697-0
    The biofilm-forming-capability of Helicobacter pylori has been suggested to be among factors influencing treatment outcome. However, H. pylori exhibit strain-to-strain differences in biofilm-forming-capability. Metabolomics enables the inference of spatial and temporal changes of metabolic activities during biofilm formation. Our study seeks to examine the differences in metabolome of low and high biofilm-formers using the metabolomic approach. Eight H. pylori clinical strains with different biofilm-forming-capability were chosen for metabolomic analysis. Bacterial metabolites were extracted using Bligh and Dyer method and analyzed by Liquid Chromatography/Quadrupole Time-of-Flight mass spectrometry. The data was processed and analyzed using the MassHunter Qualitative Analysis and the Mass Profiler Professional programs. Based on global metabolomic profiles, low and high biofilm-formers presented as two distinctly different groups. Interestingly, low-biofilm-formers produced more metabolites than high-biofilm-formers. Further analysis was performed to identify metabolites that differed significantly (p-value pylori is complex and probably driven by the bacterium' endogenous metabolism. Understanding the underlying metabolic differences between low and high biofilm-formers may enhance our current understanding of pathogenesis, extragastric survival and transmission of H. pylori infections.
    Matched MeSH terms: Helicobacter pylori/metabolism
  4. Goh KL, Cheah PL, Navaratnam P, Chin SC, Xiao SD
    J Dig Dis, 2007 Aug;8(3):139-42.
    PMID: 17650225
    The gastric biopsy urease test is an accurate and robust diagnostic test for Helicobacter pylori infection. Large endoscopy units use their own homemade unbuffered ultra-rapid urease test for diagnosis of H. pylori infection but several commercial rapid urease tests are available.
    Matched MeSH terms: Helicobacter pylori/metabolism
  5. Webb CT, Chandrapala D, Oslan SN, Bamert RS, Grinter RD, Dunstan RA, et al.
    Microbiologyopen, 2017 12;6(6).
    PMID: 29055967 DOI: 10.1002/mbo3.513
    Helicobacter pylori is a gram-negative bacterial pathogen that chronically inhabits the human stomach. To survive and maintain advantage, it has evolved unique host-pathogen interactions mediated by Helicobacter-specific proteins in the bacterial outer membrane. These outer membrane proteins (OMPs) are anchored to the cell surface via a C-terminal β-barrel domain, which requires their assembly by the β-barrel assembly machinery (BAM). Here we have assessed the complexity of the OMP C-terminal β-barrel domains employed by H. pylori, and characterized the H. pyloriBAM complex. Around 50 Helicobacter-specific OMPs were assessed with predictive structural algorithms. The data suggest that H. pylori utilizes a unique β-barrel architecture that might constitute H. pylori-specific Type V secretions system. The structural and functional diversity in these proteins is encompassed by their extramembrane domains. Bioinformatic and biochemical characterization suggests that the low β-barrel-complexity requires only minimalist assembly machinery. The H. pylori proteins BamA and BamD associate to form a BAM complex, with features of BamA enabling an oligomerization that might represent a mechanism by which a minimalist BAM complex forms a larger, sophisticated machinery capable of servicing the outer membrane proteome of H. pylori.
    Matched MeSH terms: Helicobacter pylori/metabolism*
  6. Wu H, Nakano T, Daikoku E, Morita C, Kohno T, Lian HH, et al.
    J Med Microbiol, 2005 Dec;54(Pt 12):1117-1125.
    PMID: 16278423 DOI: 10.1099/jmm.0.46158-0
    Helicobacter pylori CagA modifies the signalling of host cells and causes gastric diseases. Although CagA is injected into gastric epithelial cells through the type IV secretion machinery, it remains unclear how CagA is transported towards the machinery in the bacterial cytoplasm. In this study, it was determined that the proton-dependent intracytoplasmic transport system correlates with the priming of CagA secretion from H. pylori. The cytotoxicity of neutral-pH- and acidic-pH-treated H. pylori was examined in the AGS cell line. The amount of phosphorylated CagA in AGS cells incubated with acidic-pH- and neutral-pH-treated H. pylori was determined by enzyme immunoassay and Western blot. The production of CagA and adherence of the treated bacteria were examined by enzyme immunoassay and light microscopy, respectively. To clarify how CagA is transported towards the inner membrane of the treated bacteria, the localization of CagA was analysed by immunoelectron microscopy. The proportion of hummingbird cells in the AGS cell line rapidly increased following the inoculation of acidic-pH-treated H. pylori but increased more slowly with neutral-pH-treated H. pylori, and the phenomenon correlated with the amount of phosphorylated CagA in AGS cells. CagA was densely localized near the inner membrane in the acidic-pH-treated bacterial cytoplasm, but this localization was not observed in the neutral-pH-treated bacterial cytoplasm, suggesting that CagA shifts from the centre to the peripheral portion of the cytoplasm as a result of an extracellular decrease in pH. This phenomenon depended on the presence of UreI, a proton-dependent urea channel, but not on the presence of urea. The pH treatments did not enhance CagA production or the adherence of the bacterium to AGS cells. The authors propose that H. pylori possesses a proton-dependent intracytoplasmic transport system that probably accelerates priming for CagA injection.
    Matched MeSH terms: Helicobacter pylori/metabolism*
  7. Alfizah H, Ramelah M
    Malays J Pathol, 2012 Jun;34(1):29-34.
    PMID: 22870595 MyJurnal
    Infection with Helicobacter pylori cagA-positive strains is associated with gastroduodenal diseases. The CagA protein is injected into gastric epithelial cells and supposedly induces morphological changes termed the 'hummingbird phenotype', which is associated with scattering and increased cell motility. The molecular mechanisms leading to the CagA-dependent morphological changes are only partially known. The present study was carried out to investigate the effect of CagA variants on the magnitude of gastric epithelial cell morphological changes. Recombinant 3' terminal domains of cagA were cloned and expressed in a gastric epithelial cell line and the hummingbird phenotype was quantified by microscopy. The 3' region of the cagA gene of Malaysian H. pylori isolates showed six sub-genotypes that differed in the structural organization of the EPIYA repeat sequences. The percentage of hummingbird cells induced by CagA increased with duration of transfection. The hummingbird phenotype was observed to be more pronounced when CagA with 4 EPIYA motifs rather than 3 or 2 EPIYA motifs was produced. The activity of different CagA variants in the induction of the hummingbird phenotype in gastric epithelial cells depends at least in part on EPIYA motif variability. The difference in CagA genotypes might influence the potential of individual CagAs to cause morphological changes in host cells. Depending on the relative exposure of cells to CagA genotypes, this may contribute to the various disease outcomes caused by H. pylori infection in different individuals.
    Matched MeSH terms: Helicobacter pylori/metabolism
  8. Al-Maleki AR, Loke MF, Lui SY, Ramli NSK, Khosravi Y, Ng CG, et al.
    Cell. Microbiol., 2017 12;19(12).
    PMID: 28776327 DOI: 10.1111/cmi.12771
    Outer inflammatory protein A (OipA) is an important virulence factor associated with gastric cancer and ulcer development; however, the results have not been well established and turned out to be controversial. This study aims to elucidate the role of OipA in Helicobacter pylori infection using clinical strains harbouring oipA "on" and "off" motifs. Proteomics analysis was performed on AGS cell pre-infection and postinfection with H. pylori oipA "on" and "off" strains, using liquid chromatography/mass spectrometry. AGS apoptosis and cell cycle assays were performed. Moreover, expression of vacuolating cytotoxin A (VacA) was screened using Western blotting. AGS proteins that have been suggested previously to play a role or associated with gastric disease were down-regulated postinfection with oipA "off" strains comparing to oipA "on" strains. Furthermore, oipA "off" and ΔoipA cause higher level of AGS cells apoptosis and G0/G1 cell-cycle arrest than oipA "on" strains. Interestingly, deletion of oipA increased bacterial VacA production. The capability of H. pylori to induce apoptosis and suppress expression of proteins having roles in human disease in the absence of oipA suggests that strains not expressing OipA may be less virulent or may even be protective against carcinogenesis compared those expressing OipA. This potentially explains the higher incidence of gastric cancer in East Asia where oipA "on" strains predominates.
    Matched MeSH terms: Helicobacter pylori/metabolism*
  9. Khalilpour A, Osman S, Yunus MH, Santhanam A, Vellasamy N, Noordin R
    BMC Res Notes, 2014;7:809.
    PMID: 25406411 DOI: 10.1186/1756-0500-7-809
    Helicobacter pylori is a human pathogen and during the process of infection, antigens from the bacterium elicit strong host humoral immune responses. In our previous report, native H. pylori UreG protein showed good reactivity with sera from H. pylori patients. This study was aimed at producing the recombinant form of the protein (rUreG) and determining its seroreactivities.
    Matched MeSH terms: Helicobacter pylori/metabolism
  10. Ansari SA, Devi S, Tenguria S, Kumar A, Ahmed N
    Cytokine, 2014 Aug;68(2):110-7.
    PMID: 24767863 DOI: 10.1016/j.cyto.2014.03.006
    HP0986 protein of Helicobacter pylori has been shown to trigger induction of proinflammatory cytokines (IL-8 and TNF-α) through the activation of NF-κB and also to induce Fas mediated apoptosis of human macrophage cells (THP-1). In this study, we unravel mechanistic details of the biological effects of this protein in a murine macrophage environment. Up regulation of MCP-1 and TNF-α in HP0986-induced RAW 264.7 cells occurred subsequent to the activation and translocation of NF-κB to the cell nucleus. Further, HP0986 induced apoptosis of RAW 264.7 cells through Fas activation and this was in agreement with previous observations made with THP-1 cells. Our studies indicated activation of TNFR1 through interaction with HP0986 and this elicited the aforementioned responses independent of TLR2, TLR4 or TNFR2. We found that mouse TNFR1 activation by HP0986 facilitates formation of a complex comprising of TNFR1, TRADD and TRAF2, and this occurs upstream of NF-κB activation. Furthermore, FADD also forms a second complex, at a later stage, together with TNFR1 and TRADD, resulting in caspase-8 activation and thereby the apoptosis of RAW 264.7 cells. In summary, our observations reveal finer details of the functional activity of HP0986 protein in relation to its behavior in a murine macrophage cell environment. These findings reconfirm the proinflammatory and apoptotic role of HP0986 signifying it to be an important trigger of innate responses. These observations form much needed baseline data entailing future in vivo studies of the functions of HP0986 in a murine model.
    Matched MeSH terms: Helicobacter pylori/metabolism*
  11. Fadilah N, Hanafiah A, Razlan H, Wong ZQ, Mohamed Rose I, Rahman MM
    Br J Biomed Sci, 2016 Oct;73(4):180-187.
    PMID: 27922429
    BACKGROUND: No gold standard has yet been established for the diagnosis of H. pylori infection. A multiplex polymerase chain reaction (mPCR) was developed in this study for rapid, sensitive and specific detection of H. pylori from gastric biopsies.

    METHODS: H. pylori infections were determined by in-house rapid urease test (iRUT), culture, histology and multiplex PCR.

    RESULTS: A total of 140 (60.9%) from 230 patients were positive for H. pylori infection. H. pylori were detected in 9.6% (22/230), 17% (39/230), 12.6% (29/230) and 60% (138/230) of biopsy specimens by culture, iRUT, histology and mPCR, respectively. mPCR identified H. pylori infection in 100% of biopsies with positive histology and culture. All biopsies with positive iRUT yielded positive PCR except two cases. mPCR also detected H. pylori in additional 116, 101 and 109 biopsies that were negative by culture, iRUT and histology, respectively. Positive samples by mPCR showed lower average in H. pylori density, activity and inflammation scores. The Indians showed the highest prevalence of H. pylori infection compared to the Chinese and the Malays. In addition, Chinese patients with older age were significantly infected compared to other ethnicities.

    CONCLUSION: PCR was able to detect the highest numbers of positive cases although the lowest average scores were recorded in the activity, inflammatory and H. pylori density.

    Matched MeSH terms: Helicobacter pylori/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links