Displaying all 6 publications

Abstract:
Sort:
  1. Starkenmann C, Luca L, Niclass Y, Praz E, Roguet D
    J Agric Food Chem, 2006 Apr 19;54(8):3067-71.
    PMID: 16608232
    Polygonum odoratum Lour. has been reclassified as Persicaria odorata (Lour.) Soják [Wilson, K. L. Polygonum sensu lato (Polygonaceae) in Australia. Telopea 1988, 3, 177-182]; other synonyms currently used are Vietnamese mint or Vietnamese coriander and, in Malaysia, Daun Laksa or Laksa plant. The aerial parts of Laksa plant are highly aromatic, and they contain many organic compounds such as (Z)-3-hexenal, (Z)-3-hexenol, decanal, undecanal, and dodecanal that are typical for green, citrus, orange peel, and coriander odors. In addition to these aldehydes, 3-sulfanyl-hexanal and 3-sulfanyl-hexan-1-ol were discovered for the first time in this herb. The fresh leaves are pungent when they are chewed, although the active compound has never been identified. The pungency of Persicaria hydropiper (L.) Spach (formerly Polygonum hydropiper L., synonym water pepper) is produced by polygodial, a 1,4-dialdehyde derived from drimane terpenoids. We also identified polygodial as the active pungent compound in P. odorata (Lour.) Soják.
    Matched MeSH terms: Hexanols/analysis
  2. Ooi ZY, Harruddin N, Othman N
    Biotechnol Prog, 2015 Sep-Oct;31(5):1305-14.
    PMID: 26101101 DOI: 10.1002/btpr.2129
    Kraft lignin (KL) is a renewable source of many valuable intermediate biochemical products currently derived from petroleum. An excessive of lignin comes from pulping wastewater caused an adverse pollution problems hence affecting human and aquatic life. A comprehensive study pertaining to emulsion liquid membrane (ELM) extraction of lignin from pulping wastewater was presented. ELM formulation contains Aliquat 336 as carrier, kerosene as diluent, sodium bicarbonate (NaHCO3 ) as stripping agent and Span 80 as surfactant. The emulsion stability was investigated at different surfactant concentrations, homogenizer speed and emulsification time. Modifier (2-ethyl-1-hexanol) was added to avoid segregation of third phase while improving the emulsion stability. At optimum conditions, 95% and 56% of lignin were extracted and recovered, respectively at 10 min of extraction time, 0.007 M of Aliquat 336, 0.1 M of NaHCO3 and 1:5 of treat ratio. Additional of modifier was contributed to highest recovery up to 98%. The ELM process was found to be equally feasible and quite effective in the recovery of KL from real pulping wastewater. Therefore, ELM process provides a promising alternative technology to recover KL from pulping wastewater while solving the environmental problems simultaneously.
    Matched MeSH terms: Hexanols
  3. Abdul Habib NS, Yunus R, Rashid U, Taufiq-Yap YH, Abidin ZZ, Syam AM, et al.
    J Oleo Sci, 2014;63(5):497-506.
    PMID: 24717547
    The use of vegetable oil-based ester as a base fluid in synthetic drilling fluid has become a trend in drilling operations due to its environmental advantages. The transesterification reaction of palm oil methyl ester (POME) with 2-ethylhexanol (2EH) produced 98% of palm oil-based ethylhexyl ester in less than 30 minutes. Since the transesterification reaction of POME with 2EH is a reversible reaction, its kinetics was studied in the presence of excess EH and under vacuum. The POME-to-EH molar ratio and vacuum pressure were held constant at 1:2 and 1.5 mbar respectively and the effects of temperature (70 to 110°C) were investigated. Using excess of EH and continual withdrawal of methanol via vacuum promoted the reaction to complete in less than 10 minutes. The rate constant of the reaction (k) obtained from the kinetics study was in the range of 0.44 to 0.66 s⁻¹ and the activation energy was 15.6 kJ.mol⁻¹. The preliminary investigations on the lubrication properties of drilling mud formulated with palm oil-based 2EH ester indicated that the base oil has a great potential to substitute the synthetic ester-based oil for drilling fluid. Its high kinematic viscosity provides better lubrication to the drilling fluid compared to other ester-based oils. The pour point (-15°C) and flash point (204°C) values are superior for the drilling fluid formulation. The plastic viscosity, HPHT filtrate loss and emulsion stability of the drilling fluid had given acceptable values, while gel strength and yield point could be improved by blending it with proper additives.
    Matched MeSH terms: Hexanols/chemistry*
  4. Nadzirah, K.Z., Zainal, S., Noriham, A., Normah, I.
    MyJurnal
    Bromelain is one of the vegetal proteases found in pineapple plant. It has numerous applications in food and pharmaceuticals. This review discussed different bromelain purification techniques which will assist in determining the effect of processing conditions on the purification efficacy. There are four purification techniques to be discussed, namely; reverse micellar system, aqueous two phase extraction, cation exchange chromatography and ammonium sulphate precipitation. Of the four techniques, cation exchange chromatography had shown the best bromelain purification technique with purification fold of 10.0 followed by reverse micellar system containing CTAB/ isooctane/ hexanol/ butanol, ATPE containing PEG polymer, ammonium sulphate precipitation and ATPE containing PEO-PPO-PEO with purification fold of 5.2, 4.0, 2.81 and 1.25, respectively.
    Matched MeSH terms: Hexanols
  5. Abu-Bakar NB, Makahleh A, Saad B
    Talanta, 2014 Mar;120:47-54.
    PMID: 24468341 DOI: 10.1016/j.talanta.2013.11.081
    A fast and simple solvent microextraction technique using salting out-vortex-assisted liquid-liquid microextraction (salting out-VALLME) was developed for the extraction of furfurals (2-furfural (2-F), 3-furfural (3-F), 5-methylfurfural (5-MF) and 5-hydroxymethylfurfural (5-HMF)) and patulin (PAT) in fruit juice samples. The optimum extraction conditions for 5 mL sample were: extraction solvent, 1-hexanol; volume of extractant, 200 µL; vortex time, 45 s; salt addition, 20%. The simultaneous determination of the furfurals and PAT were investigated using high performance liquid chromatography coupled with diode array detector (HPLC-DAD). The separation was performed using ODS Hypersil C18 column (4.6 mm i.d × 250 mm, 5 μm) under gradient elution. The detection wavelengths used for all compounds were 280 nm except for 3-F (210 nm). The furfurals and PAT were successfully separated in less than 9 min. Good linearities (r(2)>0.99) were obtained within the range 1-5000 μg L(-1) for all compounds except for 3-F (10-5000 µg L(-1)) and PAT (0.5-100 μg L(-1)). The limits of detection (0.28-3.2 µg L(-1)) were estimated at S/N ratio of 3. The validated salting out-VALLME-HPLC method was applied for the analysis of furfurals and PAT in fruit juice samples (apple, mango and grape).
    Matched MeSH terms: Hexanols/chemistry
  6. Chua LYW, Chua BL, Figiel A, Chong CH, Wojdyło A, Szumny A, et al.
    Molecules, 2019 Apr 24;24(8).
    PMID: 31022967 DOI: 10.3390/molecules24081625
    The preservation of active constituents in Cassia alata through the removal of moisture is crucial in producing a final product with high antioxidant activity. This study aims to determine the influences of various drying methods and drying conditions on the antioxidant activity, volatiles and phytosterols content of C. alata. The drying methods used were convective drying (CD) at 40 °C, 50 °C and 60 °C; freeze drying; vacuum microwave drying (VMD) at 6, 9 and 12 W/g; and two-stage convective pre-drying followed by vacuum microwave finish drying (CPD-VMFD) at 50 °C and 9 W/g. The drying kinetics of C. alata are best described by the thin-layer model (modified Page model). The highest antioxidant activity, TPC and volatile concentration were achieved with CD at 40 °C. GC-MS analysis identified the presence of 51 volatiles, which were mostly present in all samples but with quantitative variation. The dominant volatiles in fresh C. alata are 2-hexenal (60.28 mg 100 g-1 db), 1-hexanol (18.70 mg 100 g-1 db) and salicylic acid (15.05 mg 100 g-1 db). The concentration of phytosterols in fresh sample was 3647.48 mg 100 g-1 db, and the major phytosterols present in fresh and dried samples were β-sitosterol (1162.24 mg 100 g-1 db). CPD-VMFD was effective in ensuring the preservation of higher phytosterol content in comparison with CD at 50 °C. The final recommendation of a suitable drying method to dehydrate C. alata leaves is CD at 40 °C.
    Matched MeSH terms: Hexanols/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links