Displaying all 6 publications

Abstract:
Sort:
  1. Arai T
    Mar Pollut Bull, 2014 Mar 15;80(1-2):186-93.
    PMID: 24461693 DOI: 10.1016/j.marpolbul.2014.01.011
    Members of the catadromous eel live in various fresh, brackish and marine habitats. Therefore, these eels can accumulate organic pollutants and are a suitable bioindicator species for determining the levels of organic contaminants within different water bodies. The ecological risk for organochlorine compounds (OCs) in Anguilla japonica with various migration patterns, such as freshwater, estuarine and marine residences, was examined to understand the specific accumulation patterns. The concentrations of HCB, ∑HCHs, ∑CHLs and ∑DDTs in the silver stage (maturing) eel were significantly higher than those in the yellow stage (immature) eel, in accordance with the higher lipid contents in the former versus the latter. The OC accumulations were clearly different among migratory types in the eel. The ecological risk of OCs increased as the freshwater residence period in the eel lengthened. The migratory histories and the lipid contents directly affected the OC accumulation in the catadromous eel species.
    Matched MeSH terms: Hydrocarbons, Chlorinated/metabolism*
  2. Ramu K, Kajiwara N, Sudaryanto A, Isobe T, Takahashi S, Subramanian A, et al.
    Environ Sci Technol, 2007 Jul 01;41(13):4580-6.
    PMID: 17695900
    Mussel samples were used in this study to measure the levels of polybrominated diphenyl ethers (PBDEs) and organochlorines (OCs) in the coastal waters of Asian countries like Cambodia, China, Hong Kong, India, Indonesia, Japan, Korea, Malaysia, the Philippines, and Vietnam. PBDEs were detected in all the samples analyzed, and the concentrations ranged from 0.66 to 440 ng/g lipid wt. Apparently higher concentrations of PBDEs were found in mussels from the coastal waters of Korea, Hong Kong, China, and the Philippines, which suggests that significant sources of these chemicals exist in and around this region. With regard to the composition of PBDE congeners, BDE-47, BDE-99, and BDE-100 were the dominant congeners in most of the samples. Among the OCs analyzed, concentrations of DDTs were the highest followed by PCBs > CHLs > HCHs > HCB. Total concentrations of DDTs, PCBs, CHLs, and HCHs in mussel samples ranged from 21 to 58 000, 3.8 to 2000, 0.93 to 900, and 0.90 to 230 ng/g lipid wt., respectively. High levels of DDTs were found in mussels from Hong Kong, Vietnam, and China; PCBs were found in Japan, Hong Kong, and industrialized/urbanized locations in Korea, Indonesia, the Philippines, and India; CHLs were found in Japan and Hong Kong; HCHs were found in India and China. These countries seem to play a role as probable emission sources of corresponding contaminants in Asia and, in turn, may influence their global distribution.
    Matched MeSH terms: Hydrocarbons, Chlorinated/metabolism*
  3. Arai T
    Mar Pollut Bull, 2013 Feb 15;67(1-2):166-76.
    PMID: 23246303 DOI: 10.1016/j.marpolbul.2012.11.006
    The bioaccumulation of organochlorines (OCs) in the muscle tissue of sea-run (anadromous) and freshwater-resident (fluvial) white-spotted charr (Salvelinus leucomaenis) was determined to assess the ecological risk related to intraspecies variations in diadromous fish life history as they migrate between sea and freshwater. Generally, there were significant correlations between the accumulation of OCs such as DDTs, HCB, HCHs and CHLs. In addition, various biological characteristics, such as total length (TL), body weight (BW) and age, and number of downstream migration (NDM) were correlated. A positive correlation occurred between the lipid content and the OC concentrations. Close linear relationships were found between TL, BW and NDM and the lipid content. Although they are both the same species, the OCs concentrations in the anadromous fish were significantly higher than those in the fluvial individuals. These results suggest that anadromous S. leucomaenis have a higher ecological risk for OCs exposure than the fluvial fish.
    Matched MeSH terms: Hydrocarbons, Chlorinated/metabolism*
  4. Hamid AA, Hamid TH, Wahab RA, Huyop F
    J Basic Microbiol, 2015 Mar;55(3):324-30.
    PMID: 25727054 DOI: 10.1002/jobm.201570031
    The non-stereospecific α-haloalkanoic acid dehalogenase DehE from Rhizobium sp. RC1 catalyzes the removal of the halide from α-haloalkanoic acid D,L-stereoisomers and, by doing so, converts them into hydroxyalkanoic acid L,D-stereoisomers, respectively. DehE has been extensively studied to determine its potential to act as a bioremediation agent, but its structure/function relationship has not been characterized. For this study, we explored the functional relevance of several putative active-site amino acids by site-specific mutagenesis. Ten active-site residues were mutated individually, and the dehalogenase activity of each of the 10 resulting mutants in soluble cell lysates against D- and L-2-chloropropionic acid was assessed. Interestingly, the mutants W34→A,F37→A, and S188→A had diminished activity, suggesting that these residues are functionally relevant. Notably, the D189→N mutant had no activity, which strongly implies that it is a catalytically important residue. Given our data, we propose a dehalogenation mechanism for DehE, which is the same as that suggested for other non-stereospecific α-haloalkanoic acid dehalogenases. To the best of our knowledge, this is the first report detailing a functional aspect for DehE, and our results could help pave the way for the bioengineering of haloalkanoic acid dehalogenases with improved catalytic properties.
    Matched MeSH terms: Hydrocarbons, Chlorinated/metabolism*
  5. Sudaryanto A, Kunisue T, Tanabe S, Niida M, Hashim H
    Arch Environ Contam Toxicol, 2005 Oct;49(3):429-37.
    PMID: 16132420
    This study determined the concentrations of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides, and tris(4-chlorophenyl) methane (TCPMe) in human breast milk samples collected in 2003 from primipara mothers living in Penang, Malaysia. OCs were detected in all the samples analyzed with DDTs, hexachlorocyclohexane isomers (HCHs), and PCBs as the major contaminants followed by chlordane compounds (CHLs), hexachlorobenzene (HCB), and TCPMe. The residue levels of DDTs, HCHs, and CHLs were comparable to or higher than those in general populations of other countries, whereas PCBs and HCB were relatively low. In addition, dioxins and related compounds were also detected with a range of dioxin equivalent concentrations from 3.4 to 24 pg-TEQs/g lipid wt. Levels of toxic equivalents (TEQs) were slightly higher than those in other developing countries but still much lower than those of industrialized nations. One donor mother contained a high TEQs level, equal to the mean value in human breast milk from Japan, implying that some of the residents in Malaysia may be exposed to specific pollution sources of dioxins and related compounds. No association was observed between OCs concentrations and maternal characteristics, which might be related to a limited number of samples, narrow range of age of the donor mothers, and/or other external factors. The recently identified endocrine disrupter, TCPMe, was also detected in all human breast milk samples of this study. A significant positive correlation was observed between TCPMe and DDTs, suggesting that technical DDT might be a source of TCPMe in Malaysia. The present study provides a useful baseline for future studies on the accumulations of OCs in the general population of Malaysia.
    Matched MeSH terms: Hydrocarbons, Chlorinated/metabolism
  6. Santhi VA, Hairin T, Mustafa AM
    Chemosphere, 2012 Mar;86(10):1066-71.
    PMID: 22197311 DOI: 10.1016/j.chemosphere.2011.11.063
    A study to assess the level of organochlorine pesticides (OCPs) and bisphenol A (BPA) in edible marine biota collected from coastal waters of Malaysia was conducted using GC-MS and SPE extraction. An analytical method was developed and validated to measure the level of 15 OCPs and BPA simultaneously from five selected marine species. It was observed that some samples had low levels of p,p'-DDE, p,p'-DDT and p,p'- DDD ranging from 0.50 ng g(-1) to 22.49 ng g(-1) dry weight (d.w) but significantly elevated level of endosulfan I was detected in a stingray sample at 2880 ng g(-1) d.w. BPA was detected in 31 out of 57 samples with concentration ranging from below quantification level (LOQ: 3 ng g(-1)) to 729 ng g(-1) d.w. The presence of OCPs is most likely from past use although there is also indication of illegal use in recent times. The study also reveals that BPA is more widely distributed in coastal species caught off the coast of the most developed state. The potential health risk from dietary intakes of OCPs and BPA from the analysed fish species was negligible.
    Matched MeSH terms: Hydrocarbons, Chlorinated/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links