Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Whaiduzzaman M, Haque MN, Rejaul Karim Chowdhury M, Gani A
    ScientificWorldJournal, 2014;2014:894362.
    PMID: 25032243 DOI: 10.1155/2014/894362
    Cloud computing is currently emerging as an ever-changing, growing paradigm that models "everything-as-a-service." Virtualised physical resources, infrastructure, and applications are supplied by service provisioning in the cloud. The evolution in the adoption of cloud computing is driven by clear and distinct promising features for both cloud users and cloud providers. However, the increasing number of cloud providers and the variety of service offerings have made it difficult for the customers to choose the best services. By employing successful service provisioning, the essential services required by customers, such as agility and availability, pricing, security and trust, and user metrics can be guaranteed by service provisioning. Hence, continuous service provisioning that satisfies the user requirements is a mandatory feature for the cloud user and vitally important in cloud computing service offerings. Therefore, we aim to review the state-of-the-art service provisioning objectives, essential services, topologies, user requirements, necessary metrics, and pricing mechanisms. We synthesize and summarize different provision techniques, approaches, and models through a comprehensive literature review. A thematic taxonomy of cloud service provisioning is presented after the systematic review. Finally, future research directions and open research issues are identified.
    Matched MeSH terms: Information Storage and Retrieval/methods*
  2. Khan S, Shiraz M, Wahab AW, Gani A, Han Q, Rahman ZB
    ScientificWorldJournal, 2014;2014:547062.
    PMID: 25097880 DOI: 10.1155/2014/547062
    Network forensics enables investigation and identification of network attacks through the retrieved digital content. The proliferation of smartphones and the cost-effective universal data access through cloud has made Mobile Cloud Computing (MCC) a congenital target for network attacks. However, confines in carrying out forensics in MCC is interrelated with the autonomous cloud hosting companies and their policies for restricted access to the digital content in the back-end cloud platforms. It implies that existing Network Forensic Frameworks (NFFs) have limited impact in the MCC paradigm. To this end, we qualitatively analyze the adaptability of existing NFFs when applied to the MCC. Explicitly, the fundamental mechanisms of NFFs are highlighted and then analyzed using the most relevant parameters. A classification is proposed to help understand the anatomy of existing NFFs. Subsequently, a comparison is given that explores the functional similarities and deviations among NFFs. The paper concludes by discussing research challenges for progressive network forensics in MCC.
    Matched MeSH terms: Information Storage and Retrieval/methods*
  3. Shah PA, Hasbullah HB, Lawal IA, Aminu Mu'azu A, Tang Jung L
    ScientificWorldJournal, 2014;2014:506028.
    PMID: 24688398 DOI: 10.1155/2014/506028
    Due to the proliferation of handheld mobile devices, multimedia applications like Voice over IP (VoIP), video conferencing, network music, and online gaming are gaining popularity in recent years. These applications are well known to be delay sensitive and resource demanding. The mobility of mobile devices, running these applications, across different networks causes delay and service disruption. Mobile IPv6 was proposed to provide mobility support to IPv6-based mobile nodes for continuous communication when they roam across different networks. However, the Route Optimization procedure in Mobile IPv6 involves the verification of mobile node's reachability at the home address and at the care-of address (home test and care-of test) that results in higher handover delays and signalling overhead. This paper presents an enhanced procedure, time-based one-time password Route Optimization (TOTP-RO), for Mobile IPv6 Route Optimization that uses the concepts of shared secret Token, time based one-time password (TOTP) along with verification of the mobile node via direct communication and maintaining the status of correspondent node's compatibility. The TOTP-RO was implemented in network simulator (NS-2) and an analytical analysis was also made. Analysis showed that TOTP-RO has lower handover delays, packet loss, and signalling overhead with an increased level of security as compared to the standard Mobile IPv6's Return-Routability-based Route Optimization (RR-RO).
    Matched MeSH terms: Information Storage and Retrieval/methods*
  4. Zaidi SZ, Abidi SS, Manickam S
    PMID: 15460713
    This paper presents a case for an intelligent agent based framework for knowledge discovery in a distributed healthcare environment comprising multiple heterogeneous healthcare data repositories. Data-mediated knowledge discovery, especially from multiple heterogeneous data resources, is a tedious process and imposes significant operational constraints on end-users. We demonstrate that autonomous, reactive and proactive intelligent agents provide an opportunity to generate end-user oriented, packaged, value-added decision-support/strategic planning services for healthcare professionals, manages and policy makers, without the need for a priori technical knowledge. Since effective healthcare is grounded in good communication, experience sharing, continuous learning and proactive actions, we use intelligent agents to implement an Agent based Data Mining Infostructure that provides a suite of healthcare-oriented decision-support/strategic planning services.
    Matched MeSH terms: Information Storage and Retrieval/methods*
  5. Sookhak M, Akhunzada A, Gani A, Khurram Khan M, Anuar NB
    ScientificWorldJournal, 2014;2014:269357.
    PMID: 25121114 DOI: 10.1155/2014/269357
    Cloud computing is a significant shift of computational paradigm where computing as a utility and storing data remotely have a great potential. Enterprise and businesses are now more interested in outsourcing their data to the cloud to lessen the burden of local data storage and maintenance. However, the outsourced data and the computation outcomes are not continuously trustworthy due to the lack of control and physical possession of the data owners. To better streamline this issue, researchers have now focused on designing remote data auditing (RDA) techniques. The majority of these techniques, however, are only applicable for static archive data and are not subject to audit the dynamically updated outsourced data. We propose an effectual RDA technique based on algebraic signature properties for cloud storage system and also present a new data structure capable of efficiently supporting dynamic data operations like append, insert, modify, and delete. Moreover, this data structure empowers our method to be applicable for large-scale data with minimum computation cost. The comparative analysis with the state-of-the-art RDA schemes shows that the proposed scheme is secure and highly efficient in terms of the computation and communication overhead on the auditor and server.
    Matched MeSH terms: Information Storage and Retrieval/methods*
  6. Mohebbi K, Ibrahim S, Zamani M, Khezrian M
    PLoS One, 2014;9(8):e104735.
    PMID: 25157872 DOI: 10.1371/journal.pone.0104735
    In this paper, a Semantic Web service matchmaker called UltiMatch-NL is presented. UltiMatch-NL applies two filters namely Signature-based and Description-based on different abstraction levels of a service profile to achieve more accurate results. More specifically, the proposed filters rely on semantic knowledge to extract the similarity between a given pair of service descriptions. Thus it is a further step towards fully automated Web service discovery via making this process more semantic-aware. In addition, a new technique is proposed to weight and combine the results of different filters of UltiMatch-NL, automatically. Moreover, an innovative approach is introduced to predict the relevance of requests and Web services and eliminate the need for setting a threshold value of similarity. In order to evaluate UltiMatch-NL, the repository of OWLS-TC is used. The performance evaluation based on standard measures from the information retrieval field shows that semantic matching of OWL-S services can be significantly improved by incorporating designed matching filters.
    Matched MeSH terms: Information Storage and Retrieval/methods*
  7. Samimi P, Ravana SD
    ScientificWorldJournal, 2014;2014:135641.
    PMID: 24977172 DOI: 10.1155/2014/135641
    Test collection is used to evaluate the information retrieval systems in laboratory-based evaluation experimentation. In a classic setting, generating relevance judgments involves human assessors and is a costly and time consuming task. Researchers and practitioners are still being challenged in performing reliable and low-cost evaluation of retrieval systems. Crowdsourcing as a novel method of data acquisition is broadly used in many research fields. It has been proven that crowdsourcing is an inexpensive and quick solution as well as a reliable alternative for creating relevance judgments. One of the crowdsourcing applications in IR is to judge relevancy of query document pair. In order to have a successful crowdsourcing experiment, the relevance judgment tasks should be designed precisely to emphasize quality control. This paper is intended to explore different factors that have an influence on the accuracy of relevance judgments accomplished by workers and how to intensify the reliability of judgments in crowdsourcing experiment.
    Matched MeSH terms: Information Storage and Retrieval/methods*
  8. Whaiduzzaman M, Gani A, Anuar NB, Shiraz M, Haque MN, Haque IT
    ScientificWorldJournal, 2014;2014:459375.
    PMID: 24696645 DOI: 10.1155/2014/459375
    Cloud computing (CC) has recently been receiving tremendous attention from the IT industry and academic researchers. CC leverages its unique services to cloud customers in a pay-as-you-go, anytime, anywhere manner. Cloud services provide dynamically scalable services through the Internet on demand. Therefore, service provisioning plays a key role in CC. The cloud customer must be able to select appropriate services according to his or her needs. Several approaches have been proposed to solve the service selection problem, including multicriteria decision analysis (MCDA). MCDA enables the user to choose from among a number of available choices. In this paper, we analyze the application of MCDA to service selection in CC. We identify and synthesize several MCDA techniques and provide a comprehensive analysis of this technology for general readers. In addition, we present a taxonomy derived from a survey of the current literature. Finally, we highlight several state-of-the-art practical aspects of MCDA implementation in cloud computing service selection. The contributions of this study are four-fold: (a) focusing on the state-of-the-art MCDA techniques, (b) highlighting the comparative analysis and suitability of several MCDA methods, (c) presenting a taxonomy through extensive literature review, and (d) analyzing and summarizing the cloud computing service selections in different scenarios.
    Matched MeSH terms: Information Storage and Retrieval/methods*
  9. Khairudin NM, Mustapha A, Ahmad MH
    ScientificWorldJournal, 2014;2014:813983.
    PMID: 24587757 DOI: 10.1155/2014/813983
    The advent of web-based applications and services has created such diverse and voluminous web log data stored in web servers, proxy servers, client machines, or organizational databases. This paper attempts to investigate the effect of temporal attribute in relational rule mining for web log data. We incorporated the characteristics of time in the rule mining process and analysed the effect of various temporal parameters. The rules generated from temporal relational rule mining are then compared against the rules generated from the classical rule mining approach such as the Apriori and FP-Growth algorithms. The results showed that by incorporating the temporal attribute via time, the number of rules generated is subsequently smaller but is comparable in terms of quality.
    Matched MeSH terms: Information Storage and Retrieval/methods*
  10. Mustapha A, Hussain A, Samad SA, Zulkifley MA, Diyana Wan Zaki WM, Hamid HA
    Biomed Eng Online, 2015;14:6.
    PMID: 25595511 DOI: 10.1186/1475-925X-14-6
    Content-based medical image retrieval (CBMIR) system enables medical practitioners to perform fast diagnosis through quantitative assessment of the visual information of various modalities.
    Matched MeSH terms: Information Storage and Retrieval/methods*
  11. Imran M, Hashim R, Noor Elaiza AK, Irtaza A
    ScientificWorldJournal, 2014;2014:752090.
    PMID: 25121136 DOI: 10.1155/2014/752090
    One of the major challenges for the CBIR is to bridge the gap between low level features and high level semantics according to the need of the user. To overcome this gap, relevance feedback (RF) coupled with support vector machine (SVM) has been applied successfully. However, when the feedback sample is small, the performance of the SVM based RF is often poor. To improve the performance of RF, this paper has proposed a new technique, namely, PSO-SVM-RF, which combines SVM based RF with particle swarm optimization (PSO). The aims of this proposed technique are to enhance the performance of SVM based RF and also to minimize the user interaction with the system by minimizing the RF number. The PSO-SVM-RF was tested on the coral photo gallery containing 10908 images. The results obtained from the experiments showed that the proposed PSO-SVM-RF achieved 100% accuracy in 8 feedback iterations for top 10 retrievals and 80% accuracy in 6 iterations for 100 top retrievals. This implies that with PSO-SVM-RF technique high accuracy rate is achieved at a small number of iterations.
    Matched MeSH terms: Information Storage and Retrieval/methods*
  12. Zare MR, Mueen A, Seng WC
    J Digit Imaging, 2014 Feb;27(1):77-89.
    PMID: 24092327 DOI: 10.1007/s10278-013-9637-0
    The demand for automatically classification of medical X-ray images is rising faster than ever. In this paper, an approach is presented to gain high accuracy rate for those classes of medical database with high ratio of intraclass variability and interclass similarities. The classification framework was constructed via annotation using the following three techniques: annotation by binary classification, annotation by probabilistic latent semantic analysis, and annotation using top similar images. Next, final annotation was constructed by applying ranking similarity on annotated keywords made by each technique. The final annotation keywords were then divided into three levels according to the body region, specific bone structure in body region as well as imaging direction. Different weights were given to each level of the keywords; they are then used to calculate the weightage for each category of medical images based on their ground truth annotation. The weightage computed from the generated annotation of query image was compared with the weightage of each category of medical images, and then the query image would be assigned to the category with closest weightage to the query image. The average accuracy rate reported is 87.5 %.
    Matched MeSH terms: Information Storage and Retrieval/methods*
  13. Zubair S, Fisal N, Baguda YS, Saleem K
    Sensors (Basel), 2013;13(10):13005-38.
    PMID: 24077319 DOI: 10.3390/s131013005
    Interest in the cognitive radio sensor network (CRSN) paradigm has gradually grown among researchers. This concept seeks to fuse the benefits of dynamic spectrum access into the sensor network, making it a potential player in the next generation (NextGen) network, which is characterized by ubiquity. Notwithstanding its massive potential, little research activity has been dedicated to the network layer. By contrast, we find recent research trends focusing on the physical layer, the link layer and the transport layers. The fact that the cross-layer approach is imperative, due to the resource-constrained nature of CRSNs, can make the design of unique solutions non-trivial in this respect. This paper seeks to explore possible design opportunities with wireless sensor networks (WSNs), cognitive radio ad-hoc networks (CRAHNs) and cross-layer considerations for implementing viable CRSN routing solutions. Additionally, a detailed performance evaluation of WSN routing strategies in a cognitive radio environment is performed to expose research gaps. With this work, we intend to lay a foundation for developing CRSN routing solutions and to establish a basis for future work in this area.
    Matched MeSH terms: Information Storage and Retrieval/methods*
  14. Hasan S, Shamsuddin SM
    Comput Intell Neurosci, 2011;2011:121787.
    PMID: 21876686 DOI: 10.1155/2011/121787
    Multistrategy Learning of Self-Organizing Map (SOM) and Particle Swarm Optimization (PSO) is commonly implemented in clustering domain due to its capabilities in handling complex data characteristics. However, some of these multistrategy learning architectures have weaknesses such as slow convergence time always being trapped in the local minima. This paper proposes multistrategy learning of SOM lattice structure with Particle Swarm Optimisation which is called ESOMPSO for solving various classification problems. The enhancement of SOM lattice structure is implemented by introducing a new hexagon formulation for better mapping quality in data classification and labeling. The weights of the enhanced SOM are optimised using PSO to obtain better output quality. The proposed method has been tested on various standard datasets with substantial comparisons with existing SOM network and various distance measurement. The results show that our proposed method yields a promising result with better average accuracy and quantisation errors compared to the other methods as well as convincing significant test.
    Matched MeSH terms: Information Storage and Retrieval/methods
  15. Seng WC, Mirisaee SH
    J Med Syst, 2011 Aug;35(4):571-8.
    PMID: 20703533 DOI: 10.1007/s10916-009-9393-3
    Content-based image retrieval techniques have been extensively studied for the past few years. With the growth of digital medical image databases, the demand for content-based analysis and retrieval tools has been increasing remarkably. Blood cell image is a key diagnostic tool for hematologists. An automated system that can retrieved relevant blood cell images correctly and efficiently would save the effort and time of hematologists. The purpose of this work is to develop such a content-based image retrieval system. Global color histogram and wavelet-based methods are used in the prototype. The system allows users to search by providing a query image and select one of four implemented methods. The obtained results demonstrate the proposed extended query refinement has the potential to capture a user's high level query and perception subjectivity by dynamically giving better query combinations. Color-based methods performed better than wavelet-based methods with regard to precision, recall rate and retrieval time. Shape and density of blood cells are suggested as measurements for future improvement. The system developed is useful for undergraduate education.
    Matched MeSH terms: Information Storage and Retrieval/methods*
  16. Hassan A, Ibrahim F
    J Digit Imaging, 2011 Apr;24(2):308-13.
    PMID: 20386951 DOI: 10.1007/s10278-010-9283-8
    This paper presents the development of kidney TeleUltrasound consultation system. The TeleUltrasound system provides an innovative design that aids the acquisition, archiving, and dissemination of medical data and information over the internet as its backbone. The system provides data sharing to allow remote collaboration, viewing, consultation, and diagnosis of medical data. The design is layered upon a standard known as Digital Imaging and Communication in Medicine (DICOM). The DICOM standard defines protocols for exchanging medical images and their associated data. The TeleUltrasound system is an integrated solution for retrieving, processing, and archiving images and providing data storage management using Structured Query Language (SQL) database. Creating a web-based interface is an additional advantage to achieve global accessibility of experts that will widely open the opportunity of greater examination and multiple consultations. This system is equipped with a high level of data security and its performance has been tested with white, black, and gray box techniques. And the result was satisfactory. The overall system has been evaluated by several radiologists in Malaysia, United Arab Emirates, and Sudan, the result is shown within this paper.
    Matched MeSH terms: Information Storage and Retrieval/methods*
  17. Patrick TH, Fong AY, Sebastian Y, Raman V, Wong YH, Sim KH
    Inform Health Soc Care, 2009 Jan;34(1):1-9.
    PMID: 19306194 DOI: 10.1080/17538150902773090
    Mining for medical data poses different challenges compared with mining other types of data. The wide range of imaging modalities of medical data leads to data integration and compatibility issues. The analysis of imaging modalities is further complicated by the different format and attributes used by the different imaging equipment by different vendors. Human factors such as interest of adapting data mining into diagnosis and planning process raised the difficulty of engaging the users into the development of a practical and useful data miner. Requirement engineering technique prototyping further enhanced the engagement of users towards the data-miner. Data from different equipment and different vendors are also merged for efficient data analysis and subsequently charting and reporting. We have also successfully engaged the medical doctors into believing the data miner's capability after they reviewed and walkthrough the prototype.
    Matched MeSH terms: Information Storage and Retrieval/methods*
  18. Mueen A, Zainuddin R, Baba MS
    J Digit Imaging, 2008 Sep;21(3):290-5.
    PMID: 17846834
    Image retrieval at the semantic level mostly depends on image annotation or image classification. Image annotation performance largely depends on three issues: (1) automatic image feature extraction; (2) a semantic image concept modeling; (3) algorithm for semantic image annotation. To address first issue, multilevel features are extracted to construct the feature vector, which represents the contents of the image. To address second issue, domain-dependent concept hierarchy is constructed for interpretation of image semantic concepts. To address third issue, automatic multilevel code generation is proposed for image classification and multilevel image annotation. We make use of the existing image annotation to address second and third issues. Our experiments on a specific domain of X-ray images have given encouraging results.
    Matched MeSH terms: Information Storage and Retrieval/methods*
  19. Zain JM, Fauzi AR
    PMID: 18003297
    This paper will study and evaluate watermarking technique by Zain and Fauzi [1]. Recommendations will then be made to enhance the technique especially in the aspect of recovery or reconstruction rate for medical images. A proposal will also be made for a better distribution of watermark to minimize the distortion of the Region of Interest (ROI). The final proposal will enhance AW-TDR in three aspects; firstly the image quality in the ROI will be improved as the maximum change is only 2 bits in every 4 pixels, or embedding rate of 0.5 bits/pixel. Secondly the recovery rate will also be better since the recovery bits are located outside the region of interest. The disadvantage in this is that, only manipulation done in the ROI will be detected. Thirdly the quality of the reconstructed image will be enhanced since the average of 2 x 2 pixels would be used to reconstruct the tampered image.
    Matched MeSH terms: Information Storage and Retrieval/methods*
  20. Saffor A, bin Ramli AR, Ng KH
    Australas Phys Eng Sci Med, 2003 Jun;26(2):39-44.
    PMID: 12956184
    Wavelet-based image coding algorithms (lossy and lossless) use a fixed perfect reconstruction filter-bank built into the algorithm for coding and decoding of images. However, no systematic study has been performed to evaluate the coding performance of wavelet filters on medical images. We evaluated the best types of filters suitable for medical images in providing low bit rate and low computational complexity. In this study a variety of wavelet filters are used to compress and decompress computed tomography (CT) brain and abdomen images. We applied two-dimensional wavelet decomposition, quantization and reconstruction using several families of filter banks to a set of CT images. Discreet Wavelet Transform (DWT), which provides efficient framework of multi-resolution frequency was used. Compression was accomplished by applying threshold values to the wavelet coefficients. The statistical indices such as mean square error (MSE), maximum absolute error (MAE) and peak signal-to-noise ratio (PSNR) were used to quantify the effect of wavelet compression of selected images. The code was written using the wavelet and image processing toolbox of the MATLAB (version 6.1). This results show that no specific wavelet filter performs uniformly better than others except for the case of Daubechies and bi-orthogonal filters which are the best among all. MAE values achieved by these filters were 5 x 10(-14) to 12 x 10(-14) for both CT brain and abdomen images at different decomposition levels. This indicated that using these filters a very small error (approximately 7 x 10(-14)) can be achieved between original and the filtered image. The PSNR values obtained were higher for the brain than the abdomen images. For both the lossy and lossless compression, the 'most appropriate' wavelet filter should be chosen adaptively depending on the statistical properties of the image being coded to achieve higher compression ratio.
    Matched MeSH terms: Information Storage and Retrieval/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links