Displaying all 4 publications

Abstract:
Sort:
  1. Nurul-Aliyaa YA, Awang NA, Mohd MH
    Lett Appl Microbiol, 2023 Oct 04;76(10).
    PMID: 37777838 DOI: 10.1093/lambio/ovad118
    The present study was conducted to isolate and identify white rot fungi (WRF) from wood decayed and to determine their ability to produce lignin-modifying enzymes (LMEs), specifically laccase (Lac), lignin peroxidase (LiP), and manganese peroxidase (MnP), on solid and liquid media supplemented with synthetic dyes namely 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), azure B, and phenol red. A total of 23 isolates of WRF were isolated from decayed wood and identified as eight different species namely Phanerochaete australis, Perenniporia tephropora, Lentinus squarrosulus, Ganoderma australe, Trametes polyzona, Lentinus sajor-caju, Gymnopilus dilepis, and Fomitopsis palustris based on morphological characteristics, DNA sequences of the internal transcribed spacer (ITS) region, and phylogenetic inference. The fungal isolates can be divided into four groups based on the type of LMEs produced, namely A (Lac-LiP-MnP) with 16 isolates, B (Lac-MnP) (three isolates), C (Lac) (three isolates), and D (MnP) (one isolate). This study highlights P. australis (BJ38) as the best producer of Lac and LiP, while L. squarrosulus (IPS72) is the best producer of MnP. The present study is the first reported P. australis as an efficient lignin degrader by demonstrating the highest activity of two important LMEs.
    Matched MeSH terms: Laccase/genetics
  2. Moin SF, Omar MN
    Protein Pept Lett, 2014;21(8):707-13.
    PMID: 23855667
    Laccases belong to the multicopper binding protein family that catalysis the reduction of oxygen molecule to produce water. These enzymes are glycosylated proteins and have been isolated and purified from fungi, bacteria, plant, insects and lichens. The variety of commercial and industrial application of laccases has attracted much attention towards the research addressing different aspects of the protein characterization, production and fit for purpose molecule. Here we briefly discuss the purification, catalytic mechanism in light of available understanding of structure-function relationship and the tailoring side of the protein, which has been the subject of recent research. Purification strategy of laccases is a method of choice and is facilitated by increased production of the enzyme. The structure-function relationship has given insights to unfold the catalytic mechanism. Site directed mutagenesis and other modification at C-terminal end or surrounding environment of copper centres have shown promising results to fit for purpose aspect, with a lot remains to be explored in glycosylation status and its alteration.
    Matched MeSH terms: Laccase/genetics
  3. Riyadi FA, Tahir AA, Yusof N, Sabri NSA, Noor MJMM, Akhir FNMD, et al.
    Sci Rep, 2020 05 08;10(1):7813.
    PMID: 32385385 DOI: 10.1038/s41598-020-64817-4
    The conversion of lignocellulosic biomass into bioethanol or biochemical products requires a crucial pretreatment process to breakdown the recalcitrant lignin structure. This research focuses on the isolation and characterization of a lignin-degrading bacterial strain from a decaying oil palm empty fruit bunch (OPEFB). The isolated strain, identified as Streptomyces sp. S6, grew in a minimal medium with Kraft lignin (KL) as the sole carbon source. Several known ligninolytic enzyme assays were performed, and lignin peroxidase (LiP), laccase (Lac), dye-decolorizing peroxidase (DyP) and aryl-alcohol oxidase (AAO) activities were detected. A 55.3% reduction in the molecular weight (Mw) of KL was observed after 7 days of incubation with Streptomyces sp. S6 based on gel-permeation chromatography (GPC). Gas chromatography-mass spectrometry (GC-MS) also successfully highlighted the production of lignin-derived aromatic compounds, such as 3-methyl-butanoic acid, guaiacol derivatives, and 4,6-dimethyl-dodecane, after treatment of KL with strain S6. Finally, draft genome analysis of Streptomyces sp. S6 also revealed the presence of strong lignin degradation machinery and identified various candidate genes responsible for lignin depolymerization, as well as for the mineralization of the lower molecular weight compounds, confirming the lignin degradation capability of the bacterial strain.
    Matched MeSH terms: Laccase/genetics
  4. Mohamad SB, Ong AL, Khairuddin RF, Ripen AM
    In Silico Biol. (Gedrukt), 2010;10(3):145-53.
    PMID: 22430288 DOI: 10.3233/ISB-2010-0423
    Laccases are industrially attractive enzymes and their applications have expanded to the field of bioremediation. The challenge of today's biotechnology in enzymatic studies is to design enzymes that not only have a higher activity but are also more stable and could fit well with the condition requirements. Laccases are known to oxidize non-natural substrates like polycyclic aromatic hydrocarbons (PAHs). We suppose by increasing the hydrophobicity of laccase, it would increase the chance of the enzyme to meet the hydrophobic substrates in a contamination site, therefore increasing the bioremediation efficacy of PAHs from environment. In this attempt, the applications of evolutionary trace (ET), molecular surface accessibility and hydrophobicity analysis on laccase sequences and laccase's crystal structure (1KYA) are described for optimal design of an enzyme with higher hydrophobicity. Our analysis revealed that Q23A, Q45I, N141A, Q237V, N262L, N301V, N331A, Q360L and Q482A could be promising exchanges to be tested in mutagenesis experiments.
    Matched MeSH terms: Laccase/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links