Displaying all 8 publications

Abstract:
Sort:
  1. George E, Kamarulzaman E
    Med J Malaysia, 1979 Dec;34(2):184-6.
    PMID: 297198
    Matched MeSH terms: Leukemia, Myeloid, Acute/diagnosis
  2. Alsalem MA, Zaidan AA, Zaidan BB, Albahri OS, Alamoodi AH, Albahri AS, et al.
    J Med Syst, 2019 Jun 01;43(7):212.
    PMID: 31154550 DOI: 10.1007/s10916-019-1338-x
    This paper aims to assist the administration departments of medical organisations in making the right decision on selecting a suitable multiclass classification model for acute leukaemia. In this paper, we proposed a framework that will aid these departments in evaluating, benchmarking and ranking available multiclass classification models for the selection of the best one. Medical organisations have continuously faced evaluation and benchmarking challenges in such endeavour, especially when no single model is superior. Moreover, the improper selection of multiclass classification for acute leukaemia model may be costly for medical organisations. For example, when a patient dies, one such organisation will be legally or financially sued for incidents in which the model fails to fulfil its desired outcome. With regard to evaluation and benchmarking, multiclass classification models are challenging processes due to multiple evaluation and conflicting criteria. This study structured a decision matrix (DM) based on the crossover of 2 groups of multi-evaluation criteria and 22 multiclass classification models. The matrix was then evaluated with datasets comprising 72 samples of acute leukaemia, which include 5327 gens. Subsequently, multi-criteria decision-making (MCDM) techniques are used in the benchmarking and ranking of multiclass classification models. The MCDM used techniques that include the integrated BWM and VIKOR. BWM has been applied for the weight calculations of evaluation criteria, whereas VIKOR has been used to benchmark and rank classification models. VIKOR has also been employed in two decision-making contexts: individual and group decision making and internal and external group aggregation. Results showed the following: (1) the integration of BWM and VIKOR is effective at solving the benchmarking/selection problems of multiclass classification models. (2) The ranks of classification models obtained from internal and external VIKOR group decision making were almost the same, and the best multiclass classification model based on the two was 'Bayes. Naive Byes Updateable' and the worst one was 'Trees.LMT'. (3) Among the scores of groups in the objective validation, significant differences were identified, which indicated that the ranking results of internal and external VIKOR group decision making were valid.
    Matched MeSH terms: Leukemia, Myeloid, Acute/diagnosis*
  3. Tay Za K, Shanmugam H, Chin EFM
    Malays J Pathol, 2019 Dec;41(3):333-338.
    PMID: 31901918
    INTRODUCTION: Acute myeloid leukaemia (AML) with t(8;21)(q22;q22) producing RUNX1-RUNX1T1 rearrangement is a distinct sub-type which is usually associated with a favourable clinical outcome. Variant forms of t(8;21) are rare. Herein we describe a novel variant of t(8;21) AML in a 25-year-old pregnant woman who presented with intermittent fever.

    CASE REPORT: Her peripheral smear and bone marrow aspirate showed many myeloblasts. Chromosomal study revealed t(8;22;21)(q22;q12;q22) and loss of X chromosome. Fluorescence in situ hybridization (FISH) using whole chromosome painting probes confirmed the three-way translocation involving chromosomes 8, 21 and 22. RUNX1-RUNX1T1 rearrangement was identified in FISH and reverse transcriptase polymerase chain reaction confirming the diagnosis of AML with variant t(8;21). The patient was treated with standard chemotherapy. She achieved morphological remission one month after induction chemotherapy.

    DISCUSSION: Although the clinical significance of variant t(8;21) is not well delineated, the evaluation of 31 such cases suggests patients with variant t(8;21) have similar prognosis to those with classical t(8;21).

    Matched MeSH terms: Leukemia, Myeloid, Acute/diagnosis
  4. Ten SK, Khor MK, Khalid H, Lin HP, Ng SC, Cheong SK, et al.
    Singapore Med J, 1992 Apr;33(2):164-6.
    PMID: 1621121
    The haematological findings and case history of 3 patients with the association of acute myeloid leukemia and translocation involving the long arm of chromosome no. 11 are presented. The recipient chromosome for the translocated material from chromosome 11 differs in all the three cases being namely chromosomes 1, 10 and 17.
    Matched MeSH terms: Leukemia, Myeloid, Acute/diagnosis
  5. Menon BS, Maziah W, Aiyar S, Zainul F, Shuaib I, Noh L
    Pediatr Int, 2001 Apr;43(2):161-3.
    PMID: 11285069
    Matched MeSH terms: Leukemia, Myeloid, Acute/diagnosis
  6. Norhaya MR, Cheong SK, Hamidah NH, Ainoon O
    Singapore Med J, 1996 Jun;37(3):320-2.
    PMID: 8942241
    A 45-year-old Malay lady developed brisk vesicular, plaque-like reaction to a Mantoux test concomitant with a diagnosis of acute myeloid leukaemia (AML). The lesion resolved one month after chemotherapy. Similar lesions developed later after she was bitten by mosquitoes on the forearms. She also had the lesions over her cheek. A skin biopsy showed infiltration of the dermis with neutrophils and some monocytoid cells. The lesion resolved one week after prednisolone therapy.
    Matched MeSH terms: Leukemia, Myeloid, Acute/diagnosis*
  7. Sutiman N, Nwe MS, Ni Lai EE, Lee DK, Chan MY, Eng-Juh Yeoh A, et al.
    Clin Lymphoma Myeloma Leuk, 2021 03;21(3):e290-e300.
    PMID: 33384264 DOI: 10.1016/j.clml.2020.11.016
    PURPOSE: To determine the prognostic factors in pediatric patients with acute myeloid leukemia (AML) and to assess whether their outcomes have improved over time.

    PATIENTS AND METHODS: Sixty-two patients with AML excluding acute promyelocytic leukemia were retrospectively analyzed. Patients in the earlier cohort (n = 36) were treated on the Medical Research Council (MRC) AML12 protocol, whereas those in the recent cohort (n = 26) were treated on the Malaysia-Singapore AML protocol (MASPORE 2006), which differed in terms of risk group stratification, cumulative anthracycline dose, and timing of hematopoietic stem-cell transplantation for high-risk patients.

    RESULTS: Significant improvements in 10-year overall survival and event-free survival were observed in patients treated with the recent MASPORE 2006 protocol compared to the earlier MRC AML12 protocol (overall survival: 88.0% ± 6.5% vs 50.1% ± 8.6%, P = .002; event-free survival: 72.1% ± 9.0 vs 50.1% ± 8.6%, P = .045). In univariate analysis, patients in the recent cohort had significantly lower intensive care unit admission rate (11.5% vs 47.2%, P = .005) and numerically lower relapse rate (26.9% vs 50.0%, P = .068) compared to the earlier cohort. Multivariate analysis showed that treatment protocol was the only independent predictive factor for overall survival (hazard ratio = 0.21; 95% confidence interval, 0.06-0.73, P = .014).

    CONCLUSION: Outcomes of pediatric AML patients have improved over time. The more recent MASPORE 2006 protocol led to significant improvement in long-term survival rates and reduction in intensive care unit admission rate.

    Matched MeSH terms: Leukemia, Myeloid, Acute/diagnosis
  8. Akhter A, Mughal MK, Elyamany G, Sinclair G, Azma RZ, Masir N, et al.
    Diagn Pathol, 2016 Sep 15;11(1):89.
    PMID: 27632978 DOI: 10.1186/s13000-016-0541-z
    The World Health Organization (WHO) classification system defines recurrent chromosomal translocations as the sole diagnostic and prognostic criteria for acute leukemia (AL). These fusion transcripts are pivotal in the pathogenesis of AL. Clinical laboratories universally employ conventional karyotype/FISH to detect these chromosomal translocations, which is complex, labour intensive and lacks multiplexing capacity. Hence, it is imperative to explore and evaluate some newer automated, cost-efficient multiplexed technologies to accommodate the expanding genetic landscape in AL.
    Matched MeSH terms: Leukemia, Myeloid, Acute/diagnosis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links