Bone fracture, being mainly caused by mechanical stress, requires special and quick attention for a rapid healing. The study presented here aims at formulating nanoparticulate system to overcome the solubility issues of lovastatin. The lovastatin nanoparticles were successfully prepared by ionotropic gelation method using chitosan and tri-polyphosphate as polymers. Thus prepared nanoparticles were found to be smooth and spherical with average particle size of 87 nm and encapsulation efficiency of 86.5%. The in-vitro drug release was found to be almost 89.6% in the first 360 minutes. Artificial fracture was produced in female Wistar rats at right leg using fracture apparatus. After administration of lovastatin nanoparticles or saline solution, the respective groups were observed for various parameters. The X-ray imaging showed that lovastatin accelerated bone healing, compared to control. The growth of animals was not hampered by lovastatin by any means. The radiographic examination confirmed a role of lovastatin in increasing bone density. The histological study showed the broken, proliferated and discontinued trabecullae in the control, while at the same time point, the normal, thick, continuous and connected trabecullae were observed in animals administered with lovastatin nanoparticles. The biomechanical studies showed high breaking resilience and minimum bone brittleness in animals injected with lovastatin nanoparticles. Considering these observations we state that lovastatin helps in rapid bone healing after fracture via increasing the bone density.
Statins are competitive inhibitors of HMGCoA reductase and are commonly used as antihypercholesterolemic agents. Experimental studies clearly demonstrate the beneficial effects of statins on bone. Tocotrienols have also been shown to have anti-osteoporotic effects on the skeletal system. This study was conducted to observe the effect of a combination of delta-tocotrienol and lovastatin on structural bone histomorphometry and bone biomechanical strength in a postmenopausal rat model at clinically tolerable doses, and to compare it with the effect of delta-tocotrienol or lovastatin.
Osteoporosis is becoming a major health problem that is associated with increased fracture risk. Previous studies have shown that osteoporosis could delay fracture healing. Although there are potential agents available to promote fracture healing of osteoporotic bone such as statins and tocotrienol, studies on direct delivery of these agents to the fracture site are limited. This study was designed to investigate the effects of two potential agents, lovastatin and tocotrienol using targeted drug delivery system on fracture healing of postmenopausal osteoporosis rats. The fracture healing was evaluated using micro CT and biomechanical parameters. Forty-eight Sprague-Dawley female rats were divided into 6 groups. The first group was sham-operated (SO), while the others were ovariectomized (OVx). After two months, the right tibiae of all rats were fractured at metaphysis region using pulsed ultrasound and were fixed with plates and screws. The SO and OVxC groups were given two single injections of lovastatin and tocotrienol carriers. The estrogen group (OVx+EST) was given daily oral gavages of Premarin (64.5 µg/kg). The Lovastatin treatment group (OVx+Lov) was given a single injection of 750 µg/kg lovastatin particles. The tocotrienol group (OVx+TT) was given a single injection of 60 mg/kg tocotrienol particles. The combination treatment group (OVx+Lov+TT) was given two single injections of 750 µg/kg lovastatin particles and 60 mg/kg tocotrienol particles. After 4 weeks of treatment, the fractured tibiae were dissected out for micro-CT and biomechanical assessments. The combined treatment group (OVx+Lov+TT) showed significantly higher callus volume and callus strength than the OVxC group (p<0.05). Both the OVx+Lov and OVx+TT groups showed significantly higher callus strength than the OVxC group (p<0.05), but not for callus volume. In conclusion, combined lovastatin and tocotrienol may promote better fracture healing of osteoporotic bone.
To determine the medication prescribing patterns in hospitalized patients with chronic kidney disease (CKD) in a Malaysian hospital, we prospectively studied a cohort of 600 patients in two phases with 300 patients in each phase. The first phase was carried out from the beginning of February to the end of May 2007, and the second phase was from the beginning of March to the end of June 2008. Patients with CKD who had an estimated creatinine clearance ≤ 50 mL/min and were older than 18 years were included. A data collection form was used to collect data from the patients' medical records and chart review. All systemic medications prescribed during hospitalization were included. The patients were prescribed 5795 medications. During the first phase, the patients were prescribed 2814 medication orders of 176 different medications. The prescriptions were 2981 of 158 medications during the second phase. The mean number of medications in the first and second phases was 9.38 ± 3.63 and 9.94 ± 3.78 respectively (P-value = 0.066). The top five used medications were calcium carbonate, folic acid/vitamin B complex, metoprolol, lovastatin, and ferrous sulfate. The most commonly used medication classes were mineral supplements, vitamins, antianemic preparations, antibacterials, and beta-blocking agents. This study provides an overview of prescription practice in a cohort of hospitalized CKD patients and indicates possible areas of improvement in prescription practice.
Osteoporotic drugs are used to prevent fragility fractures, but their role in fracture healing still remains unknown. Thus, alternative agents with suitable mode of delivery are needed to promote fracture healing. This study was performed to investigate the effects of direct deliveries of lovastatin and tocotrienol to fracture sites on ossification-related gene expression in fracture healing in a postmenopausal osteoporosis model. Forty-eight Sprague Dawley female rats were divided into six groups. Group I comprised the sham-operated rats, while Groups II-VI were ovariectomized rats. After 8 weeks, the right tibiae of all rats were fractured and stabilized. Group I and Group II were given two single injections of lovastatin and tocotrienol carriers. Group III was given an estrogen preparation at 64.5 µg/kg daily via oral gavages. Group IV was injected with lovastatin particles (750 µg/kg), while Group V was injected with tocotrienol particles (60 mg/kg). Group VI received two single injections of 750 µg/kg lovastatin particles and 60 mg/kg tocotrienol particles. After 4 weeks, the gene expressions were measured. Group VI showed significantly higher gene expressions of osteocalcin, BMP-2, VEGF-α, and RUNX-2 compared to Group II. In conclusion, combined treatment of lovastatin and tocotrienol upregulated the expression of genes related to fracture healing.