RESEARCH QUESTION: The differential impact of frequently used CSs and their regimens on long-term (> 5 years) cardiorespiratory progression in children with DMD is unknown.
STUDY DESIGN AND METHODS: This was a retrospective longitudinal study including children with DMD followed at Dubowitz Neuromuscular Centre, Great Ormond Street Hospital London, England, from May 2000 to June 2017. Patients enrolled in any interventional clinical trials were excluded. We collected patients' anthropometrics and respiratory (FVC, FVC % predicted and absolute FVC, and noninvasive ventilation requirement [NIV]) and cardiac (left ventricular shortening function [LVFS%]) function. CSs-naïve patients had never received CSs. Patients who were treated with CSs took either deflazacort or prednisolone, daily or intermittently (10 days on/10 days off) for > 1 month. Average longitudinal models were fitted for yearly respiratory (FVC % predicted) and cardiac (LVFS%) progression. A time-to-event analysis to FVC % predicted < 50%, NIV start, and cardiomyopathy (LVFS% < 28%) was performed in CS-treated (daily and intermittent) vs CS-naïve patients.
RESULTS: There were 270 patients, with a mean age at baseline of 6.2 ± 2.3 years. The median follow-up time was 5.6 ± 3.5 years. At baseline, 263 patients were ambulant. Sixty-six patients were treated with CSs daily, 182 patients underwent CSs intermittent > 60% treatment, and 22 were CS-naïve patients. Yearly FVC % predicted declined similarly from 9 years (5.9% and 6.9% per year, respectively; P = .27) in the CSs-daily and CSs-intermittent groups. The CSs-daily group declined from a higher FVC % predicted than the CSs-intermittent group (P < .05), and both reached FVC % predicted < 50% and NIV requirement at a similar age, > 2 years later than the CS-naïve group. LVFS% declined by 0.53% per year in the CSs-treated group irrespective of the CSs regimen, significantly slower (P < .01) than the CSs-naïve group progressing by 1.17% per year. The age at cardiomyopathy was 16.6 years in the CSs-treated group (P < .05) irrespective of regimen and 13.9 years in the CSs-naïve group.
INTERPRETATION: CSs irrespective of the regimen significantly improved respiratory function and delayed NIV requirement and cardiomyopathy.
RESULTS: We obtained survey responses from 87 out of 148 clinicians (62%) from 13 countries and regions. In China, 1385 DMD patients were followed-up by 5 respondent neurologists, and 84% were between 0 and 9 years of age (15% were 10-19 years, 1% > 19 years). While in Japan, 1032 patients were followed-up by 20 clinicians, and the age distribution was similar between the 3 groups (27% were 0-9 years, 35% were 10-19 years, 38% were >19 years). Most respondent clinicians (91%) were aware of DMD standard of care recommendations. Daily prednisolone/prednisone administration was used most frequently at initiation (N = 45, 64%). Inconsistent opinion on steroid therapy after loss of ambulation and medication for bone protection was observed.
CONCLUSIONS: Rare disease research infrastructures have been underdeveloped in many of Asian and Oceanian countries. In this situation, our results show the snapshots of current medical situation and clinical practice in DMD. For further epidemiological studies, expansion of DMD registries is necessary.
METHODS: In this study, a dystrophin-deficient myoblast cell line established from the skeletal muscle of a dystrophic (mdx) mouse was used as a model. The dfd13 (dystrophin-deficient) and C2C12 (non-dystrophic) myoblasts were cultured in low mitogen conditions for 10 days to induce differentiation. The cells were subjected to total protein extraction prior to Western blotting assay technique. Protein sub-fractionation has been conducted to determine protein localization. The live-cell analysis of autophagy assay was done using a flow cytometer.
RESULTS: In our culture system, the dfd13 myoblasts did not achieve terminal differentiation. PTEN expression was profoundly increased in dfd13 myoblasts throughout the differentiation day subsequently indicates perturbation of PI3K/Akt/mTOR regulation. In addition, rictor-mTORC2 was also found inactivated in this event. This occurrence has caused FoxO3 misregulation leads to higher activation of autophagy-related genes in dfd13 myoblasts. Autophagosome formation was increased as LC3B-I/II showed accumulation upon differentiation. However, the ratio of LC3B lipidation and autophagic flux were shown decreased which exhibited dystrophic features.
CONCLUSION: Perturbation of the PTEN-PI3K/Akt pathway triggers excessive autophagosome formation and subsequently reduced autophagic flux within dystrophin-deficient myoblasts where these findings are of importance to understand Duchenne Muscular Dystrophy (DMD) patients. We believe that some manipulation within its regulatory signaling reported in this study could help restore muscle homeostasis and attenuate disease progression. Video Abstract.
MAIN METHODS: Mice deficient in both dystrophin and ASC (encoded by Pycard [PYD And CARD Domain Containing]) were generated. The impact of ASC deficiency on muscular dystrophy of mdx mice were assessed by measurements of serum cytokines, Western blot, real-time PCR and histopathological staining.
KEY FINDINGS: The pro-inflammatory cytokines such as TNF-α, IL-6, KC/GRO and IL-10 were markedly increased in the sera of 8-week-old mdx mice compared to WT. Western blotting showed that P2X7, caspase-1, ASC and IL-18 were upregulated. Disruption of ASC and dystrophin expression in the mdx/ASC-/- mice was verified by Western blot analysis. Histopathological analysis did not find significant alterations in the muscular dystrophy phenotype in mdx/ASC-/- mice as compared to mdx mice.
SIGNIFICANCE: Taken together, our results show that disruption of the central adaptor ASC of the inflammasome is insufficient to alleviate muscular dystrophy phenotype in mdx mice.
METHODS: Articles detailing potential applications of CRISPR/Cas9 in neurodegenerative settings were retrieved from PubMed and Google Scholar with the keywords "CRISPR," "gene editing," and "neurodegenerative diseases." Relevant information was collected and critically reviewed.
RESULTS: The utility of CRISPR/Cas9 coupled with viral transduction ranges from the disruption of amyloid precursor protein (APP) production at a genomic level in Alzheimer's disease (AD) to the deletion of varying exon portions of the Dmd gene in Duchenne muscular dystrophy (DMD) which would increase dystrophin expression. This usage of CRISPR/Cas9 also extends to experimentally ameliorate the neurodegenerative effects caused by viral infections.
CONCLUSION: The CRISPR/Cas9 gene editing tool is a powerful arsenal in the field of gene therapy and molecular medicine; hence, more research should be called to focus on the ample potential this tool has to offer in the field of neurodegenerative diseases.