Displaying all 8 publications

Abstract:
Sort:
  1. Talib I, Sundaraj K, Lam CK, Hussain J, Ali MA
    Eur J Appl Physiol, 2019 Jan;119(1):9-28.
    PMID: 30242464 DOI: 10.1007/s00421-018-3994-9
    PURPOSE: Crosstalk in myographic signals is a major hindrance to the understanding of local information related to individual muscle function. This review aims to analyse the problem of crosstalk in electromyography and mechanomyography.

    METHODS: An initial search of the SCOPUS database using an appropriate set of keywords yielded 290 studies, and 59 potential studies were selected after all the records were screened using the eligibility criteria. This review on crosstalk revealed that signal contamination due to crosstalk remains a major challenge in the application of surface myography techniques. Various methods have been employed in previous studies to identify, quantify and reduce crosstalk in surface myographic signals.

    RESULTS: Although correlation-based methods for crosstalk quantification are easy to use, there is a possibility that co-contraction could be interpreted as crosstalk. High-definition EMG has emerged as a new technique that has been successfully applied to reduce crosstalk.

    CONCLUSIONS: The phenomenon of crosstalk needs to be investigated carefully because it depends on many factors related to muscle task and physiology. This review article not only provides a good summary of the literature on crosstalk in myographic signals but also discusses new directions related to techniques for crosstalk identification, quantification and reduction. The review also provides insights into muscle-related issues that impact crosstalk in myographic signals.

    Matched MeSH terms: Myography/methods*
  2. Uwamahoro R, Sundaraj K, Subramaniam ID
    Biomed Eng Online, 2021 Jan 03;20(1):1.
    PMID: 33390158 DOI: 10.1186/s12938-020-00840-w
    This research has proved that mechanomyographic (MMG) signals can be used for evaluating muscle performance. Stimulation of the lost physiological functions of a muscle using an electrical signal has been determined crucial in clinical and experimental settings in which voluntary contraction fails in stimulating specific muscles. Previous studies have already indicated that characterizing contractile properties of muscles using MMG through neuromuscular electrical stimulation (NMES) showed excellent reliability. Thus, this review highlights the use of MMG signals on evaluating skeletal muscles under electrical stimulation. In total, 336 original articles were identified from the Scopus and SpringerLink electronic databases using search keywords for studies published between 2000 and 2020, and their eligibility for inclusion in this review has been screened using various inclusion criteria. After screening, 62 studies remained for analysis, with two additional articles from the bibliography, were categorized into the following: (1) fatigue, (2) torque, (3) force, (4) stiffness, (5) electrode development, (6) reliability of MMG and NMES approaches, and (7) validation of these techniques in clinical monitoring. This review has found that MMG through NMES provides feature factors for muscle activity assessment, highlighting standardized electromyostimulation and MMG parameters from different experimental protocols. Despite the evidence of mathematical computations in quantifying MMG along with NMES, the requirement of the processing speed, and fluctuation of MMG signals influence the technique to be prone to errors. Interestingly, although this review does not focus on machine learning, there are only few studies that have adopted it as an alternative to statistical analysis in the assessment of muscle fatigue, torque, and force. The results confirm the need for further investigation on the use of sophisticated computations of features of MMG signals from electrically stimulated muscles in muscle function assessment and assistive technology such as prosthetics control.
    Matched MeSH terms: Myography/methods
  3. Talib I, Sundaraj K, Lam CK
    J Biomech Eng, 2021 Jan 01;143(1).
    PMID: 32691054 DOI: 10.1115/1.4047850
    This study analyzed the crosstalk in mechanomyographic (MMG) signals from elbow flexors during isometric muscle actions from 20% to 100% maximum voluntary isometric contraction (MVIC). Twenty-five young, healthy, male participants performed the isometric elbow flexion, forearm pronation, and supination tasks at an elbow joint angle of 90 deg. The MMG signals from the biceps brachii (BB), brachialis (BRA), and brachioradialis (BRD) muscles were recorded using accelerometers. The cross-correlation coefficient was used to quantify the crosstalk in MMG signals, recorded in a direction transverse to muscle fiber axis, among the muscle pairs (P1: BB and BRA, P2: BRA and BRD, and P3: BB and BRD). In addition, the MMG RMS and MPF were quantified. The mean normalized RMS and mean MPF exhibited increasing (r > 0.900) and decreasing (r 
    Matched MeSH terms: Myography/methods
  4. Ibitoye MO, Hamzaid NA, Zuniga JM, Hasnan N, Wahab AK
    Sensors (Basel), 2014;14(12):22940-70.
    PMID: 25479326 DOI: 10.3390/s141222940
    The research conducted in the last three decades has collectively demonstrated that the skeletal muscle performance can be alternatively assessed by mechanomyographic signal (MMG) parameters. Indices of muscle performance, not limited to force, power, work, endurance and the related physiological processes underlying muscle activities during contraction have been evaluated in the light of the signal features. As a non-stationary signal that reflects several distinctive patterns of muscle actions, the illustrations obtained from the literature support the reliability of MMG in the analysis of muscles under voluntary and stimulus evoked contractions. An appraisal of the standard practice including the measurement theories of the methods used to extract parameters of the signal is vital to the application of the signal during experimental and clinical practices, especially in areas where electromyograms are contraindicated or have limited application. As we highlight the underpinning technical guidelines and domains where each method is well-suited, the limitations of the methods are also presented to position the state of the art in MMG parameters extraction, thus providing the theoretical framework for improvement on the current practices to widen the opportunity for new insights and discoveries. Since the signal modality has not been widely deployed due partly to the limited information extractable from the signals when compared with other classical techniques used to assess muscle performance, this survey is particularly relevant to the projected future of MMG applications in the realm of musculoskeletal assessments and in the real time detection of muscle activity.
    Matched MeSH terms: Myography/methods*
  5. Islam MA, Sundaraj K, Ahmad RB, Sundaraj S, Ahamed NU, Ali MA
    PLoS One, 2014;9(8):e104280.
    PMID: 25090008 DOI: 10.1371/journal.pone.0104280
    In mechanomyography (MMG), crosstalk refers to the contamination of the signal from the muscle of interest by the signal from another muscle or muscle group that is in close proximity.
    Matched MeSH terms: Myography/methods
  6. Ibitoye MO, Hamzaid NA, Zuniga JM, Abdul Wahab AK
    Clin Biomech (Bristol, Avon), 2014 Jun;29(6):691-704.
    PMID: 24856875 DOI: 10.1016/j.clinbiomech.2014.04.003
    Previous studies have explored to saturation the efficacy of the conventional signal (such as electromyogram) for muscle function assessment and found its clinical impact limited. Increasing demand for reliable muscle function assessment modalities continues to prompt further investigation into other complementary alternatives. Application of mechanomyographic signal to quantify muscle performance has been proposed due to its inherent mechanical nature and ability to assess muscle function non-invasively while preserving muscular neurophysiologic information. Mechanomyogram is gaining accelerated applications in evaluating the properties of muscle under voluntary and evoked muscle contraction with prospects in clinical practices. As a complementary modality and the mechanical counterpart to electromyogram; mechanomyogram has gained significant acceptance in analysis of isometric and dynamic muscle actions. Substantial studies have also documented the effectiveness of mechanomyographic signal to assess muscle performance but none involved comprehensive appraisal of the state of the art applications with highlights on the future prospect and potential integration into the clinical practices. Motivated by the dearth of such critical review, we assessed the literature to investigate its principle of acquisition, current applications, challenges and future directions. Based on our findings, the importance of rigorous scientific and clinical validation of the signal is highlighted. It is also evident that as a robust complement to electromyogram, mechanomyographic signal may possess unprecedented potentials and further investigation will be enlightening.
    Matched MeSH terms: Electromyography/methods; Myography/methods*
  7. Islam MA, Sundaraj K, Ahmad RB, Sundaraj S, Ahamed NU, Ali MA
    PLoS One, 2014;9(5):e96628.
    PMID: 24802858 DOI: 10.1371/journal.pone.0096628
    This study aimed: i) to examine the relationship between the magnitude of cross-talk in mechanomyographic (MMG) signals generated by the extensor digitorum (ED), extensor carpi ulnaris (ECU), and flexor carpi ulnaris (FCU) muscles with the sub-maximal to maximal isometric grip force, and with the anthropometric parameters of the forearm, and ii) to quantify the distribution of the cross-talk in the MMG signal to determine if it appears due to the signal component of intramuscular pressure waves produced by the muscle fibers geometrical changes or due to the limb tremor.
    Matched MeSH terms: Electromyography/methods; Myography/methods
  8. Csato V, Kadir SZSA, Khavandi K, Bennett H, Sugden S, Gurney AM, et al.
    Physiol Rep, 2019 Nov;7(22):e14260.
    PMID: 31782255 DOI: 10.14814/phy2.14260
    We investigated the biomechanical relationship between intraluminal pressure within small mesenteric resistance arteries, oxidant activation of PKG, Ca2+ sparks, and BK channel vasoregulation. Mesenteric resistance arteries from wild type (WT) and genetically modified mice with PKG resistance to oxidative activation were studied using wire and pressure myography. Ca2+ sparks and Ca2+ transients within vascular smooth muscle cells of intact arteries were characterized using high-speed confocal microscopy of intact arteries. Arteries were studied under conditions of varying intraluminal pressure and oxidation. Intraluminal pressure specifically, rather than the generic stretch of the artery, was necessary to activate the oxidative pathway. We demonstrated a graded step activation profile for the generation of Ca2+ sparks and also a functional "ceiling" for this pressure --sensitive oxidative pathway. During steady state pressure - induced constriction, any additional Ca2+ sensitive-K+ channel functional availability was independent of oxidant activated PKG. There was an increase in the amplitude, but not the Area under the Curve (AUC) of the caffeine-induced Ca2+ transient in pressurized arteries from mice with oxidant-resistant PKG compared with wild type. Overall, we surmise that intraluminal pressure within resistance arteries controls Ca2+ spark vasoregulation through a tightly controlled pathway with a graded onset switch. The pathway, underpinned by oxidant activation of PKG, cannot be further boosted by additional pressure or oxidation once active. We propose that these restrictive characteristics of pressure-induced Ca2+ spark vasoregulation confer stability for the artery in order to provide a constant flow independent of additional pressure fluctuations or exogenous oxidants.
    Matched MeSH terms: Myography/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links