Displaying all 6 publications

Abstract:
Sort:
  1. Bukhari SN, Jantan I, Masand VH, Mahajan DT, Sher M, Naeem-ul-Hassan M, et al.
    Eur J Med Chem, 2014 Aug 18;83:355-65.
    PMID: 24980117 DOI: 10.1016/j.ejmech.2014.06.034
    A series of novel carbonyl compounds was synthesized by a simple, eco-friendly and efficient method. These compounds were screened for anti-oxidant activity, in vitro cytotoxicity and for inhibitory activity for acetylcholinesterase and butyrylcholinesterase. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. Among them, compound 14 exhibited strong free radical scavenging activity (18.39 μM) while six compounds (1, 3, 4, 13, 14, and 19) were found to be the most protective against Aβ-induced neuronal cell death in PC12 cells. Compounds 4 and 14, containing N-methyl-4-piperidone linker, showed high acetylcholinesterase inhibitory activity as compared to reference drug donepezil. Molecular docking and QSAR (Quantitative Structure-Activity Relationship) studies were also carried out to determine the structural features that are responsible for the acetylcholinesterase and butyrylcholinesterase inhibitory activity.
    Matched MeSH terms: Neuroprotective Agents/chemical synthesis
  2. Nallathamby N, Phan CW, Sova M, Saso L, Sabaratnam V
    Med Chem, 2021;17(6):623-629.
    PMID: 31849289 DOI: 10.2174/1573406416666191218095635
    BACKGROUND: Microglia are associated with neuroinflammation, which play a key role in the pathogenesis of neurodegenerative diseases. It has been reported that some quinazolines and quinazolinones possess anti-inflammatory properties. However, the pharmacological properties of certain quinazoline derivatives are still unknown.

    OBJECTIVE: The antioxidant, cytotoxic, and protective effects of a series of synthesized 2- trifluoromethylquinazolines (2, 4, and 5) and quinazolinones (6-8) in lipopolysaccharide (LPS)- murine microglia (BV2) and hydrogen peroxide (H2O2)-mouse neuroblastoma-2a (N2a) cells were investigated.

    METHOD: The antioxidant activity of synthesized compounds was evaluated with ABTS and DPPH assays. The cytotoxic activities were determined by MTS assay in BV2 and N2a cells. The production of nitric oxide (NO) in LPS-induced BV2 microglia cells was quantified.

    RESULTS: The highest ABTS and DPPH scavenging activities were observed for compound 8 with 87.7% of ABTS scavenge percentage and 54.2% DPPH inhibition. All compounds were noncytotoxic in BV2 and N2a cells at 5 and 50 μg/mL. The compounds which showed the highest protective effects in LPS-induced BV2 and H2O2-induced N2a cells were 5 and 7. All tested compounds, except 4, also reduced NO production at concentrations of 50 μg/mL. The quinazolinone series 6-8 exhibited the highest percentage of NO reduction, ranging from 38 to 60%. Compounds 5 and 8 possess balanced antioxidant and protective properties against LPS- and H2O2-induced cell death, thus showing great potential to be developed into anti-inflammatory and neuroprotective agents.

    CONCLUSION: Compounds 5 and 7 were able to protect the BV2 and N2a cells against LPS and H2O2 toxicity, respectively, at a low concentration (5 μg/mL). Compounds 6-8 showed potent reduction of NO production in BV2 cells.

    Matched MeSH terms: Neuroprotective Agents/chemical synthesis*
  3. Saleem Khan M, Asif Nawaz M, Jalil S, Rashid F, Hameed A, Asari A, et al.
    Bioorg Chem, 2022 01;118:105457.
    PMID: 34798458 DOI: 10.1016/j.bioorg.2021.105457
    Substitution of hazardous and often harmful organic solvents with "green" and "sustainable" alternative reaction media is always desirous. Ionic liquids (IL) have emerged as valuable and versatile liquids that can replace most organic solvents in a variety of syntheses. However, recently new types of low melting mixtures termed as Deep Eutectic Solvents (DES) have been utilized in organic syntheses. DES are non-volatile in nature, have sufficient thermal stability, and also have the ability to be recycled and reused. Hence DES have been used as alternative reaction media to perform different organic reactions. The availability of green, inexpensive and easy to handle alternative solvents for organic synthesis is still scarce, hence our interest in DES mediated syntheses. Herein we have investigated Biginelli reaction in different DES for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Monoamine oxidases and cholinesterases are important drug targets for the treatment of various neurological disorders such as Alzheimer's disease, Parkinson's disease, depression and anxiety. The compounds synthesized herein were evaluated for their inhibitory potential against these enzymes. Some of the compounds were found to be highly potent and selective inhibitors. Compounds 1 h and 1c were the most active monoamine oxidase A (MAO A) (IC50 = 0.31 ± 0.11 µM) and monoamine oxidase B (MAO B) (IC50 = 0.34 ± 0.04 µM) inhibitors respectively. All compounds were selective AChE inhibitors and did not inhibit BChE (<29% inhibition). Compound 1 k (IC50 = 0.13 ± 0.09 µM) was the most active AChE inhibitor.
    Matched MeSH terms: Neuroprotective Agents/chemical synthesis
  4. Gurjar AS, Darekar MN, Yeong KY, Ooi L
    Bioorg Med Chem, 2018 05 01;26(8):1511-1522.
    PMID: 29429576 DOI: 10.1016/j.bmc.2018.01.029
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder with multiple factors associated with its pathogenesis. Our strategy against AD involves design of multi-targeted 2-substituted-4,5-diphenyl-1H-imidazole analogues which can interact and inhibit AChE, thereby, increasing the synaptic availability of ACh, inhibit BuChE, relieve induced oxidative stress and confer a neuroprotective role. Molecular docking was employed to study interactions within the AChE active site. In silico ADME study was performed to estimate pharmacokinetic parameters. Based on computational studies, some analogues were synthesized and subjected to pharmacological evaluation involving antioxidant activity, toxicity and memory model studies in animals followed by detailed mechanistic in vitro cholinesterase inhibition study. Amongst the series, analogue 13 and 20 are the most promising multi-targeted candidates which can potentially increase memory, decrease free radical levels and protect neurons against cognitive deficit.
    Matched MeSH terms: Neuroprotective Agents/chemical synthesis
  5. Rosini M, Simoni E, Caporaso R, Basagni F, Catanzaro M, Abu IF, et al.
    Eur J Med Chem, 2019 Oct 15;180:111-120.
    PMID: 31301562 DOI: 10.1016/j.ejmech.2019.07.011
    N-methyl-d-aspartate receptors (NMDAR) are critically involved in the pathogenesis of Alzheimer's disease (AD). Acting as an open-channel blocker, the anti-AD drug memantine preferentially targets NMDAR overactivation, which has been proposed to trigger neurotoxic events mediated by amyloid β peptide (Aβ) and oxidative stress. In this study, we applied a multifunctional approach by conjugating memantine to ferulic acid, which is known to protect the brain from Aβ neurotoxicity and neuronal death caused by ROS. The most interesting compound (7) behaved, like memantine, as a voltage-dependent antagonist of NMDAR (IC50 = 6.9 μM). In addition, at 10 μM concentration, 7 exerted antioxidant properties both directly and indirectly through the activation of the Nrf-2 pathway in SH-SY5Y cells. At the same concentration, differently from the parent compounds memantine and ferulic acid alone, it was able to modulate Aβ production, as revealed by the observed increase of the non-amyloidogenic sAPPα in H4-SW cells. These findings suggest that compound 7 may represent a promising tool for investigating NMDAR-mediated neurotoxic events involving Aβ burden and oxidative damage.
    Matched MeSH terms: Neuroprotective Agents/chemical synthesis
  6. Abbasi MA, Hassan M, Ur-Rehman A, Siddiqui SZ, Hussain G, Shah SAA, et al.
    Comput Biol Chem, 2018 Dec;77:72-86.
    PMID: 30245349 DOI: 10.1016/j.compbiolchem.2018.09.007
    The heterocyclic compounds have been extensively reported for their bioactivity potential. The current research work reports the synthesis of some new multi-functional derivatives of 2-furoic piperazide (1; 1-(2-furoyl)piperazine). The synthesis was initiated by reacting the starting compound 1 with 3,5-dichloro-2-hydroxybenzenesulfonyl chloride (2) in a basic, polar and protic medium to obtain the parent sulfonamide 3 which was then treated with different electrophiles, 4a-g, in a polar and aprotic medium to acquire the designed molecules, 5a-g. These convergent derivatives were evaluated for their inhibitory potential against α-glucosidase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Acarbose was used as a reference standard for α-glucosidase inhibition while eserine for AChE and BChE inhibition. Some of the synthesized compounds were identified as promising inhibitors of these three enzymes and their bioactivity potentials were also supported by molecular docking study. The most active compounds among the synthetic analogues might be helpful in drug discovery and development for the treatment of type 2 diabetes and Alzhiemer's diseases.
    Matched MeSH terms: Neuroprotective Agents/chemical synthesis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links