Displaying all 8 publications

Abstract:
Sort:
  1. Lee SY, Hairul Bahara NH, Choong YS, Lim TS, Tye GJ
    J Colloid Interface Sci, 2014 Nov 01;433:183-188.
    PMID: 25129336 DOI: 10.1016/j.jcis.2014.07.033
    DNA-templated silver nanoclusters (AgNC) are a class of subnanometer sized fluorophores with good photostability and brightness. It has been applied as a diagnostic tool mainly for deoxyribonucleic acid (DNA) detection. Integration of DNA oligomers to generate AgNCs is interesting as varying DNA sequences can result in different fluorescence spectra. This allows a simple fluorescence shifting effect to occur upon DNA hybridization with the hybridization efficiency being a pronominal factor for successful shifting. The ability to shift the fluorescence spectra as a result of hybridization overcomes the issue of background intensities in most fluorescent based assays. Here we describe an optimized method for the detection of single-stranded and double-stranded synthetic forkhead box P3 (FOXP3) target by hybridization with the DNA fluorescence shift sensor. The system forms a three-way junction by successful hybridization of AgNC, G-rich strand (G-rich) to the target DNA, which generated a shift in fluorescence spectra with a marked increase in fluorescence intensity. The DNA fluorescence shift sensor presents a rapid and specific alternative to conventional DNA detection.
    Matched MeSH terms: Nucleic Acid Hybridization/methods
  2. Low KF, Chuenrangsikul K, Rijiravanich P, Surareungchai W, Chan YY
    World J Microbiol Biotechnol, 2012 Apr;28(4):1699-706.
    PMID: 22805952 DOI: 10.1007/s11274-011-0978-x
    A disposable horseradish peroxidase (HRP)-based electrochemical genosensor was developed for chronoamperometric detection of single-stranded asymmetric lolB gene PCR amplicon (118 bp in length) of the food-borne pathogen, Vibrio cholerae. A two-step sandwich-type hybridization strategy using two specific probes was employed for specific detection of the target single-stranded DNA (ssDNA). The analytical performances of the detection platform have been evaluated using a synthetic ssDNA (ST3) which was identical to the target single-stranded amplicon and a total of 19 bacterial strains. Under optimal condition, ST3 was calibrated with a dynamic range of 0.4883-15.6250 nM. By coupling asymmetric PCR amplification, the probe-based electrochemical genosensor was highly specific to the target organism (100% specificity) and able to detect as little as 0.85 ng/μl of V. cholerae genomic DNA.
    Matched MeSH terms: Nucleic Acid Hybridization/methods
  3. Ibrahim Z, Tsuboi Y, Ono O
    IEEE Trans Nanobioscience, 2006 Jun;5(2):103-9.
    PMID: 16805106
    Previously, direct-proportional length-based DNA computing (DPLB-DNAC) for solving weighted graph problems has been reported. The proposed DPLB-DNAC has been successfully applied to solve the shortest path problem, which is an instance of weighted graph problems. The design and development of DPLB-DNAC is important in order to extend the capability of DNA computing for solving numerical optimization problem. According to DPLB-DNAC, after the initial pool generation, the initial solution is subjected to amplification by polymerase chain reaction and, finally, the output of the computation is visualized by gel electrophoresis. In this paper, however, we give more attention to the initial pool generation of DPLB-DNAC. For this purpose, two kinds of initial pool generation methods, which are generally used for solving weighted graph problems, are evaluated. Those methods are hybridization-ligation and parallel overlap assembly (POA). It is found that for DPLB-DNAC, POA is better than that of the hybridization-ligation method, in terms of population size, generation time, material usage, and efficiency, as supported by the results of actual experiments.
    Matched MeSH terms: Nucleic Acid Hybridization/methods*
  4. Rajan S, Shen TH, Santhanam J, Othman NH, Othman N, Hock TT
    Trop Biomed, 2007 Jun;24(1):17-22.
    PMID: 17568373
    Human papillomavirus (HPV) is well known as an etiological factor for the development of anogenital carcinomas. The aim of our study was to compare the performance of USFDA approved Hybrid II (HCII) Assay and recently introduced DR. HPV Chip Kit for the detection of HPV DNA in clinical cervical scrapings from 40 patients. HPV DNA testing was performed using the automated HCII Assay system and DR. HPV Chip Kit. Taking cytological results as gold standard, it was found that HCII was more sensitive (36.4%) than DR. HPV Chip Kit (18.2%) although specificity was 100% with the latter method. In addition, both these molecular methods had comparable negative and positive predictive values. It was concluded that both HCII and DR. HPV Chip Kit have comparable specificity. However, sensitivity for detection of HPV in clinical samples with HCII is almost double as compared to DR. HPV Chip Kit.
    Matched MeSH terms: Nucleic Acid Hybridization/methods
  5. Lai JY, Loh Q, Choong YS, Lim TS
    Biotechniques, 2018 11;65(5):269-274.
    PMID: 30394125 DOI: 10.2144/btn-2018-0031
    Gene assembly methods are an integral part of molecular cloning experiments. The majority of existing vector assembly methods stipulate a need for exonucleases, endonucleases and/or the use of single-stranded DNA as starting materials. Here, we introduced a vector assembly method that employs conventional PCR to amplify stable double-stranded DNA fragments and assembles them into functional vectors specifically for antibody chain shuffling. We successfully formed vectors using cassettes amplified from different templates and assembled an array of single chain fragment variable clones of fixed variable heavy chain, with different variable light chains - a chain shuffling process for antibody maturation. The method provides an easy alternative to the conventional cloning process.
    Matched MeSH terms: Nucleic Acid Hybridization/methods*
  6. Low KF, Zain ZM, Yean CY
    Biosens Bioelectron, 2017 Jan 15;87:256-263.
    PMID: 27567251 DOI: 10.1016/j.bios.2016.08.064
    A novel enzyme/nanoparticle-based DNA biosensing platform with dual colorimetric/electrochemical approach has been developed for the sequence-specific detection of the bacterium Vibrio cholerae, the causative agent of acute diarrheal disease in cholera. This assay platform exploits the use of shelf-stable and ready-to-use (shelf-ready) reagents to greatly simplify the bioanalysis procedures, allowing the assay platform to be more amenable to point-of-care applications. To assure maximum diagnosis reliability, an internal control (IC) capable of providing instant validation of results was incorporated into the assay. The microbial target, single-stranded DNA amplified with asymmetric PCR, was quantitatively detected via electrochemical stripping analysis of gold nanoparticle-loaded latex microspheres as a signal-amplified hybridization tag, while the incorporated IC was analyzed using a simplified horseradish peroxidase enzyme-based colorimetric scheme by simple visual observation of enzymatic color development. The platform showed excellent diagnostic sensitivity and specificity (100%) when challenged with 145 clinical isolate-spiked fecal specimens. The limits of detection were 0.5ng/ml of genomic DNA and 10 colony-forming units (CFU)/ml of bacterial cells with dynamic ranges of 0-100ng/ml (R(2)=0.992) and log10 (1-10(4) CFU/ml) (R(2)=0.9918), respectively. An accelerated stability test revealed that the assay reagents were stable at temperatures of 4-37°C, with an estimated ambient shelf life of 200 days. The versatility of the biosensing platform makes it easily adaptable for quantitative detection of other microbial pathogens.
    Matched MeSH terms: Nucleic Acid Hybridization/methods
  7. Ariffin EY, Lee YH, Futra D, Tan LL, Karim NHA, Ibrahim NNN, et al.
    Anal Bioanal Chem, 2018 Mar;410(9):2363-2375.
    PMID: 29504083 DOI: 10.1007/s00216-018-0893-1
    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10-12-1.0×10-2 μM, with a low detection limit of 8.17×10-14 μM (R2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.
    Matched MeSH terms: Nucleic Acid Hybridization/methods
  8. Chua KB, Wang LF, Lam SK, Crameri G, Yu M, Wise T, et al.
    Virology, 2001 May 10;283(2):215-29.
    PMID: 11336547
    A search for the natural host of Nipah virus has led to the isolation of a previously unknown member of the family Paramyxoviridae. Tioman virus (TiV) was isolated from the urine of fruit bats (Pteropus hypomelanus) found on the island of the same name off the eastern coast of peninsular Malaysia. An electron microscopic study of TiV-infected cells revealed spherical and pleomorphic-enveloped viral particles (100--500 nm in size) with a single fringe of embedded peplomers. Virus morphogenesis occurred at the plasma membrane of infected cells and morphological features of negative-stained ribonucleoprotein complexes were compatible with that of viruses in the family Paramyxoviridae. Serological studies revealed no cross-reactivity with antibodies against a number of known Paramyxoviridae members except for the newly described Menangle virus (MenV), isolated in Australia in 1997. Failure of PCR amplification using MenV-specific primers suggested that this new virus is related to but different from MenV. For molecular characterization of the virus, a cDNA subtraction strategy was employed to isolate virus-specific cDNA from virus-infected cells. Complete gene sequences for the nucleocapsid protein (N) and phosphoprotein (P/V) have been determined and recombinant N and V proteins produced in baculovirus. The recombinant N and V proteins reacted with porcine anti-MenV sera in Western blot, confirming the serological cross-reactivity observed during initial virus characterization. The lack of a C protein-coding region in the P/V gene, the creation of P mRNA by insertion of 2-G residues, and the results of phylogenetic analyses all indicated that TiV is a novel member of the genus Rubulavirus.
    Matched MeSH terms: Nucleic Acid Hybridization/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links