Displaying all 5 publications

Abstract:
Sort:
  1. Shahzad A, Saad MN, Walter N, Malik AS, Meriaudeau F
    Biomed Eng Online, 2014;13:109.
    PMID: 25087016 DOI: 10.1186/1475-925X-13-109
    Subcutaneous veins localization is usually performed manually by medical staff to find suitable vein to insert catheter for medication delivery or blood sample function. The rule of thumb is to find large and straight enough vein for the medication to flow inside of the selected blood vessel without any obstruction. The problem of peripheral difficult venous access arises when patient's veins are not visible due to any reason like dark skin tone, presence of hair, high body fat or dehydrated condition, etc.
    Matched MeSH terms: Optical Imaging/methods*
  2. Ahmed S, Kreft A, Chowdhury EH, Hossain SM, Galle PR, Neumann H
    PLoS One, 2020;15(10):e0239814.
    PMID: 33002048 DOI: 10.1371/journal.pone.0239814
    BACKGROUND AND STUDY AIMS: Despite major technical advancements, endoscopic surveillance for detecting premalignant lesions in Barrett's esophagus is challenging because of their flat appearance with only subtle morphological changes. Molecular endoscopic imaging (MEI) using nanoparticles (NPs), coupled with fluorescently labeled antibody permits visualization of disease-specific molecular alterations. The aim of this ex vivo study was to assess the diagnostic applicability of MEI with NPs to detect Barrett's metaplasia.

    PATIENTS AND METHODS: Seven patients undergoing endoscopic surveillance of known Barrett's esophagus were recruited. Freshly resected biopsy specimens were incubated with NPs coupled with FITC labeled Muc-2 antibodies and examined with MEI. Fluorescence intensity from Barrett's mucosa and control specimens were compared, followed by histological confirmation.

    RESULTS: Fluorescence signals, indicating the presence of goblet cells, were noted for traditional MEI using Muc-2 antibodies in Barrett's intestinal metaplasia. Significantly stronger fluorescence signals were achieved with NPs coupled with FITC-conjugated Muc-2 antibodies. The results of MEI with NPs for the prediction of Barrett's metaplasia correlated with the final histopathological examination in all the cases.

    CONCLUSIONS: Highly-specific NPs detected Barrett's metaplasia more efficiently than conventional MEI in this first feasibility study. MEI was as effective as standard histopathology for identifying Muc-2 containing goblet cells for diagnosis of Barrett's metaplasia. (DRKS-ID: DRKS00017747).

    Matched MeSH terms: Optical Imaging/methods*
  3. Nasir NAM, Paus R, Ansell DM
    Wound Repair Regen, 2019 01;27(1):126-133.
    PMID: 30575205 DOI: 10.1111/wrr.12688
    Ex vivo wounded human skin organ culture is an invaluable tool for translationally relevant preclinical wound healing research. However, studies incorporating this system are still underutilized within the field because of the low throughput of histological analysis required for downstream assessment. In this study, we use intravital fluorescent dye to lineage trace epidermal cells, demonstrating that wound re-epithelialization of human ex vivo wounds occurs consistent with an extending shield mechanism of collective migration. Moreover, we also report a relatively simple method to investigate global epithelial closure of explants in culture using daily fluorescent dye treatment and en face imaging. This study is the first to quantify healing of ex vivo wounds in a longitudinal manner, providing global assessments for re-epithelialization and tissue contraction. We show that this approach can identify alterations to healing with a known healing promoter. This methodological study highlights the utility of human ex vivo wounds in enhancing our understanding of mechanisms of human skin repair and in evaluating novel therapies to improve healing outcome.
    Matched MeSH terms: Optical Imaging/methods*
  4. Jahangir MA, Gilani SJ, Muheem A, Jafar M, Aslam M, Ansari MT, et al.
    Pharm Nanotechnol, 2019;7(3):234-245.
    PMID: 31486752 DOI: 10.2174/2211738507666190429113906
    BACKGROUND: The amalgamation of biological sciences with nano stuff has significantly expedited the progress of biological strategies, greatly promoting practical applications in biomedical fields.

    OBJECTIVE: With distinct optical attributes (e.g., robust photostability, restricted emission spectra, tunable broad excitation, and high quantum output), fluorescent quantum dots (QDs) have been feasibly functionalized with manageable interfaces and considerably utilized as a new class of optical probe in biological investigations.

    METHODS: In this review article, we structured the current advancements in the preparation methods and attributes of QDs. Furthermore, we extend an overview of the outstanding potential of QDs for biomedical research and radical approaches to drug delivery.

    CONCLUSION: Notably, the applications of QDs as smart next-generation nanosystems for neuroscience and pharmacokinetic studies have been explained. Moreover, recent interests in the potential toxicity of QDs are also apprised, ranging from cell investigations to animal studies.

    Matched MeSH terms: Optical Imaging/methods
  5. Abdul Manaf SA, Hegde G, Mandal UK, Wui TW, Roy P
    Curr Drug Deliv, 2017;14(8):1071-1077.
    PMID: 27745545 DOI: 10.2174/1567201813666161017130612
    BACKGROUND: Nano-scale carbon systems are emerging alternatives in drug delivery and bioimaging applications of which they gradually replace the quantum dots characterized by toxic heavy metal content in the latter application.

    OBJECTIVE: The work intended to use carbon nanospheres synthesized from biowaste Sago bark for cancer cell imaging applications.

    METHODS: This study synthesised carbon nanospheres from biowaste Sago bark using a catalyst-free pyrolysis technique. The nanospheres were functionalized with fluorescent dye coumarin-6 for cell imaging. Fluorescent nanosytems were characterized by field emission scanning electron microscopy-energy dispersive X ray, photon correlation spectroscopy and fourier transform infrared spectroscopy techniques.

    RESULTS: The average size of carbon nanospheres ranged between 30 and 40 nm with zeta potential of -26.8 ± 1.87 mV. The percentage viability of cancer cells on exposure to nanospheres varied from 91- 89 % for N2a cells and 90-85 % for A-375 cells respectively. Speedy uptake of the fluorescent nanospheres in both N2a and A-375 cells was observed within two hours of exposure.

    CONCLUSION: Novel fluorescent carbon nanosystem design following waste-to-wealth approach exhibited promising potential in cancer cell imaging applications.

    Matched MeSH terms: Optical Imaging/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links