Palm oil mill effluent (POME) contains complex and highly biodegradable organic matters so discharging it without appropriate treatment may lead to environmental problems. POME final discharge quality is normally determined based on conventional chemical detection such as by biological oxygen demand (BOD) and chemical oxygen demand (COD). The novelty of the present study is that the toxicity effects of the POME final discharge samples were evaluated based on whole effluent toxicity (WET) and toxicity identification evaluation (TIE) tests using Daphnia magna. The toxicity unit (TU) values were recorded to be in the range from TU = 1.1-11 obtained from WET, and the TIE manipulation tests suggested that a substantial amount of toxic compounds was contained in the POME final discharge. Phenol, 2,6-bis (1,1-dimethylethyl)- and heavy metals such as Cu and Zn were detected in all the effluents and were recognized as being the main toxicants in the POME final discharge. GC/MS analyses also successfully identified cyclic volatile methyl siloxanes; cyclotetrasiloxane, octamethyl- (D4), cyclopentasiloxane, decamethyl- (D5), cyclohexasiloxane, dodecamethyl- (D6). D4 was detected at 0.0148-0.0357 mg/L, which could be potentially toxic. The palm oil industry used only water in the form of steam to process the fruits, and the presence of these compounds might be derived from the detergents and grease used in palm oil mill cleaning and maintenance operations. An appropriate treatment process is thus required to eliminate these toxicants from the POME final discharge. It is recommended that two approaches, chemical-based monitoring as well as biological toxicity-based monitoring, should be utilized for achieving an acceptable quality of POME final discharge in the future.
Global human population has increased dramatically over the past 50 years. As a result, marine fisheries and finfish aquaculture have become increasingly unsustainable, driving bivalve aquaculture to become an important food industry for the production of marine animal protein to support the growing market demand for animal protein. It is projected that the rate of bivalve aquaculture expansion will be greatly accelerated in the near future as the human population continues to increase. Although it is generally believed that unfed bivalve aquaculture has less impact on the environment than finfish aquaculture, the rapid expansion of bivalve aquaculture has raised concerns about its potential negative impact, especially on plankton and benthic community. Therefore, there is an urgent need to update the potential effects of bivalve aquaculture on plankton and benthic community. This article reviews the present state of knowledge on environmental issues related to bivalve aquaculture, and discusses potential mitigation measures for the environmental impacts induced by expansion of bivalve aquaculture. This review provides guidance for scientists and farm managers to clarify the current state of research and identify priority research needs for future bivalve aquaculture research. Therefore, specific management strategies can be formulated for the sustainable development and expansion of bivalve aquaculture.
Microplastics are a major constituent of plastic waste and are of an increasing global concern. Although microplastics are prevalent in marine ecosystems, the characterisation of plankton communities has been largely neglected in this aspect, especially in tropical ecosystems. To better understand the role of microplastics as a carrier of harmful plankton in marine ecosystems, epiplastic plankton communities in tropical marine ecosystems were studied from beach sediments along the Johor and Singapore Straits. Complementary analysis of microscopy and high throughput sequencing of the 16S rRNA (V3-V4) and 18S (V4) rRNA regions provided evidence that the plastisphere provided an appropriate environment to host a wide range of planktonic organisms. An average of 781 OTUs were identified across the three sampling sites. The structures of plankton communities were distinct across the sampling sites and were generally dominated by dinoflagellates, fungi and chlorophytes. We demonstrate that marine microplastics serve as microhabitats that are a host to harmful phytoplankton species, including viable resting cysts of dinoflagellates. Furthermore, plastics isolated from the location with the greatest anthropogenic influence demonstrated the greatest plankton diversity. This study presents evidence of diverse toxic plankton species present on the plastisphere and highlights its importance as a vector of the transport of harmful opportunistic species in relation to anthropogenic influence, in the marine environment.
Determining statistical patterns irrespective of interacting agents (i.e. macroecology) is useful to explore the mechanisms driving population fluctuations and extinctions in natural food webs. Here, we tested four predictions of a neutral model on the distribution of community fluctuations (CF) and the distributions of persistence times (APT). Novel predictions for the food web were generated by combining (1) body size-density scaling, (2) Taylor's law and (3) low efficiency of trophic transference. Predictions were evaluated on an exceptional data set of plankton with 15 years of weekly samples encompassing c. 250 planktonic species from three trophic levels, sampled in the western English Channel. Highly symmetric non-Gaussian distributions of CF support zero-sum dynamics. Variability in CF decreased while a change from an exponential to a power law distribution of APT from basal to upper trophic positions was detected. Results suggest a predictable but profound effect of trophic position on fluctuations and extinction in natural communities.
Fauna of Cladocera (Crustacea: Branchiopoda) of Sabah state of Malaysia, Borneo Island, was evaluated for the first time. Samples from 40 locations were studied, and 31 species of Cladocera were revealed, including three species of Sididae, one species of Daphnidae, one species of Moinidae, four species of Macrothricidae, two species of Ilyocryptidae, and 20 species of Chydoridae. One species of Ilyocryptidae, Ilyocryptus yooni Jeong, Kotov and Lee, 2012, is recorded for Malaysia for the first time, and one more, Anthalona sp., is probably new for science. Of 31 species recorded for Sabah, only three are true planktonic species and 28 are substrate-associated species. Absence of large natural lakes, habitats with most rich cladoceran fauna, can be an important factor limiting diversity of Cladocera in Sabah.
Two new species of urothoid amphipods from Pulau Sibu and Pulau Tinggi, Johor are described and illustrated. The specimens of Urothoe sibuensis new species were collected by vertical haul plankton net and is distinctively different from other existing Urothoe species by these combination of special characters; similar gnathopods 1-2 with short and stout propodus expanded into poorly defined palms; large eyes and epimeron 3 smooth. Urothoe tinggiensis new species as collected using an airlift suction sampler at seagrass area is characterized by its different gnathopodal configuration with setose dactylus of 5th pereopod; eyes minute; carpus is wider than merus in the 5th pereopod; subquadrate coxa 4; merus and carpus of pereopods 6-7 are linear.
Before 2019, adults of the sea louse Caligus undulatus were reported exclusively in plankton from ocean samples worldwide and were not known to parasitize fish hosts. In 2019, the first instance of this caligid parasitizing a fish host, Japanese sardinella Sardinella zunasi, was reported in the Seto Inland Sea, Japan. The presently reported study aimed to investigate the biology and ecology of adult C. undulatus in plankton communities in the Seto Inland Sea and surrounding waters from March 2020 to November 2021. The occurrence of sea lice in plankton communities was restricted to the period of August-January, mainly between October and December with maximum plankton abundance (10.5 ind. per 1000 m3) recorded on 30 November 2020. All post-naupliar stages of C. undulatus were found on the host fish, and they represented a typical life cycle pattern known for Caligus species. The sex ratios in both planktonic and parasitic adults were not significantly different. The frequency of occurrence of planktonic and parasitic adult females with egg strings was 68 and 46%, respectively. The number of eggs per string was significantly higher in parasitic adult females (mean ± SD: 16.9 ± 8.6) than in planktonic females (10.4 ± 10.8). These data suggest that adult females were detached from their hosts and continued to produce eggs without feeding. Seasonal migration of S. zunasi to brackish water for spawning may result in the detachment of mature caligids from the host and may be effective in protecting the offspring, which are less tolerant of less brackish water.
Aureobasidin A (AbA) is a cyclic depsipeptide antifungal compound that inhibits a wide range of pathogenic fungi. In this study, the in vitro susceptibility of 92 clinical isolates of various Candida species against AbA was assessed by determining the planktonic and biofilm MICs of the isolates. The MIC(50) and MIC(90) of the planktonic Candida yeast were 1 and 1 μg ml(-1), respectively, whereas the biofilm MIC(50) and MIC(90) of the isolates were 8 and ≥64 μg ml(-1) respectively. This study demonstrates AbA inhibition on filamentation and biofilm development of C. albicans. The production of short hyphae and a lack of filamentation might have impaired biofilm development of AbA-treated cells. The AbA resistance of mature Candidia biofilms (24 h adherent population) was demonstrated in this study.
We sampled extensively (29 stations) at the Klang estuarine system over a 3-day scientific expedition. We measured physical and chemical variables (temperature, salinity, dissolved oxygen, total suspended solids, dissolved inorganic nutrients) and related them to the spatial distribution of phototrophic picoplankton (Ppico). Multivariate analysis of variance of the physicochemical variables showed the heterogeneity of the Klang estuarine system where the stations at each transect were significantly different (Rao's F₁₈, ₃₆ = 8.401, p < 0.001). Correlation analyses also showed that variables related to Ppico abundance and growth were mutually exclusive. Distribution of Ppico was best explained by the physical mixing between freshwater and seawater whereas Ppico growth was correlated with temperature.
Introduction. Cold plasma is frequently utilized for the purpose of eliminating microbial contaminants. Under optimal conditions, it can function as plasma medicine for treating various diseases, including infections caused by Candida albicans, an opportunistic pathogen that can overgrow in individuals with weakened immune system.Gap Statement. To date, there has been less molecular study on cold plasma-treated C. albicans.Research Aim. The study aims to fill the gap in understanding the molecular response of C. albicans to cold plasma treatment.Methodology. This project involved testing a cold plasma generator to determine its antimicrobial effectiveness on C. albicans' planktonic cells. Additionally, the cells' transcriptomics responses were investigated using RNA sequencing at various treatment durations (1, 3 and 5 min).Results. The results show that our cold plasma effectively eliminates C. albicans. Cold plasma treatment resulted in substantial downregulation of important pathways, such as 'nucleotide metabolism', 'DNA replication and repair', 'cell growth', 'carbohydrate metabolism' and 'amino acid metabolism'. This was an indication of cell cycle arrest of C. albicans to preserve energy consumption under unfavourable conditions. Nevertheless, C. albicans adapted its GSH antioxidant system to cope with the oxidative stress induced by reactive oxygen species, reactive nitrogen species and other free radicals. The treatment likely led to a decrease in cell pathogenicity as many virulence factors were downregulated.Conclusion. The study demonstrated the major affected pathways in cold plasma-treated C. albicans, providing valuable insights into the molecular response of C. albicans to cold plasma treatment. The findings contribute to the understanding of the antimicrobial efficiency of cold plasma and its potential applications in the field of microbiology.
Unlike those in the mainland of Southeast Asia, the Cladocera of the Malay Archipelago has not been intensively studied, except for the state of Sabah in the north-eastern part of the Borneo island. This study aimed to complete the inventory of the Cladocera in Sabah by looking at different types of water bodies including oxbow lakes, small lakes, reservoirs, ponds, ditches and paddy fields. From 32 sites examined, 35 species of cladocerans, nine of which were new records to Sabah, were found from 25 localities. With this new finding, the total number of cladoceran species in Sabah increased to 39 species, including five species of Sididae, four species of Daphniidae, one species of Moinidae, five species of Macrothricidae, two species of Ilyocryptidae, and 22 species of Chydoridae. Only 8 % ( three species) of Sabah cladocerans are true planktonic. This study illustrated that most cladocerans were associated with substrates in the littoral zone and thus appropriate sampling methods should be employed in different microhabitats for comprehensive biodiversity assessment.
Life cycle assessment was used to evaluate the environmental impacts of phytoplanktonic biofuels as possible sustainable alternatives to fossil fuels. Three scenarios were examined for converting planktonic biomass into higher-value commodities and energy streams using the alga Scenedesmus sp. and the cyanobacterium Arthrospira sp. as the species of interest. The first scenario (Sc-1) involved the production of biodiesel and glycerol from the planktonic biomass. In the second scenario (Sc-2), biodiesel and glycerol were generated from the planktonic biomass, and biogas was produced from the residual biomass. The process also involved using a catalyst derived from snail shells for biodiesel production. The third scenario (Sc-3) was similar to Sc-2 but converted CO2 from the biogas upgrading to methanol, which was then used in synthesizing biodiesel. The results indicated that Sc-2 and Sc-3 had a reduced potential (up to 60 % less) for damaging human health compared to Sc-1. Sc-2 and Sc-3 had up to 61 % less environmental impact than Sc-1. Sc-2 and Sc-3 reduced the total cumulative exergy demand by up to 44 % compared to Sc-1. In conclusion, producing chemicals and utilities within the biorefinery could significantly improve environmental sustainability, reduce waste, and diversify revenue streams.
Increased primary plankton productivity was observed in a brackish water lagoon of Terengganu during the study period between January 1988 to December 1988. The lagoon is also the site for the fish cage culture activities of sea bass during the study period. An examination of water quality at the sampling stations during the study period indicated that both the organic and inorganic nutrients were high during the pre-monsoon period. The source of the nutrient in the lagoon was believed to be derived from the agro-based industrial effluents, fertilisers from paddy fields as well as untreated human and animal wastes. This coincided with the peak production of plankton in the surface waters of the brackish water lagoon. During this period both cultured and indigenous fish species were seen to suffer from oxygen asphyxiation (suffocation due to lack of oxygen). The primary productivity values ranged from 9 to 22 μg/L/h during the peak period while the microplankton species were composed of diatom, flagellates and dinoflagellates. Reduction in the primary productivity values were obtained with reduction in sallinity, specially during the peak monsoon months (November to March) corresponding to the Northeast monsoon period.
Marine biofouling causes problems to marine structure and obstructs condenser tubes in cooling systems which use sea water as the coolant. The main purpose of this study is to investigate the seasonal ecology of biofouling organisms such as the green mussel, Perna viridis, the dominant fouling species in the Eastern Johore Straits at the Senoko Power Station. The spawning time and its relationship with environmental conditions were studied. The physical, chemical and biological conditions of the sea at Senoko were monitored for a year. Settling slides were used to study the fouling succession in different monsoon seasons. The study showed that there were two main spawning peaks for the green mussel and that these peaks occurred during the intermonsoon months of November and April. These peaks were also correlated with the bimodal patterns for salinity, dissolved oxyen, bivalve veliger larval density and total plankton biomass of the Eastern Johore Strait water. Succession patterns were similar during the two monsoon seasons, however, the rate of fouling was probably greater during the southwest monsoon months. It is therefore advisable that the control or reduction of biofouling in Eastern Johore Strait should take into account the seasonal fluctuations and spawning of the fouling organisms.
Three strains of the chain-forming diatom Skeletonema marinoi, differing in their production of polyunsaturated aldehydes (PUA) and nutritional food components, were used in experiments on feeding, egg production, hatching success, pellet production, and behavior of three common planktonic copepods: Acartia tonsa, Pseudocalanus elongatus, and Temora longicornis. The three different diatom strains (9B, 1G, and 7J) induced widely different effects on Acartia tonsa physiology, and the 9B strain induced different effects for the three copepods. In contrast, different strains induced no or small alterations in the distribution, swimming behavior, and turning frequency of the copepods. 22:6(n-3) fatty acid (DHA) and sterol content of the diet typically showed a positive effect on either egg production (A. tonsa) or hatching success (P. elongatus), while other measured compounds (PUA, other long-chain polyunsaturated fatty acids) of the algae had no obvious effects. Our results demonstrate that differences between strains of a given diatom species can generate effects on copepod physiology, which are as large as those induced by different algae species or groups. This emphasizes the need to identify the specific characteristics of local diatoms together with the interacting effects of different mineral, biochemical, and toxic compounds and their potential implications on different copepod species.
Knowledge about the biogeography of marine bacterioplankton on the global scale in general and in Southeast Asia in particular has been scarce. This study investigated the biogeography of bacterioplankton community in Singapore seawaters. Twelve stations around Singapore island were sampled on different schedules over 1 year. Using PCR-DNA fingerprinting, DNA cloning and sequencing, and microarray hybridization of the 16S rRNA genes, we observed clear spatial variations of bacterioplankton diversity within the small area of the Singapore seas. Water samples collected from the Singapore Strait (south) throughout the year were dominated by DNA sequences affiliated with Cyanobacteria and Alphaproteobacteria that were believed to be associated with the influx of water from the open seas in Southeast Asia. On the contrary, water in the relatively polluted Johor Strait (north) were dominated by Betaproteobacteria, Gammaproteobacteria, and Bacteroidetes and that were presumably associated with river discharge and the relatively eutrophic conditions of the waterway. Bacterioplankton diversity was temporally stable, except for the episodic surge of Pseudoalteromonas, associated with algal blooms. Overall, these results provide valuable insights into the diversity of bacterioplankton communities in Singapore seas and the possible influences of hydrological conditions and anthropogenic activities on the dynamics of the communities.
A comparison of zooplankton abundance and community in the seagrass and non-seagrass areas of Limau-limauan and Bak- Bak waters within the newly established Tun Mustapha Marine Park was made during 15-17 May 2017. Samples were collected via horizontal tow of a 140 μm plankton net. Environmental variables (temperature, salinity, DO, pH, turbidity) showed no significant differences among the study sites. However, zooplankton showed increasing abundance from non-seagrass, seagrass edge, to seagrass areas at Limau-limauan, while abundance values were comparable among the stations at Bak-bak. Overall zooplankton abundance was significantly higher at the seagrass areas relative to the non-seagrass station at Limau-limauan (p < 0.005), while no statistical difference was found at Bak-Bak (p < 0.21). Mean canopy height was 3-fold higher (p < 0.001) at Limau-limauan than Bak-Bak, suggesting the importance of seagrass bed structural complexity in habitat preference for zooplankton. Cluster analysis revealed the zooplankton community from the seagrass area at Limau-limauan was different from that at seagrass edge and non-seagrass areas, which may be attributed to the influence of seagrass meadows in forming characteristic zooplankton compositions. Marked differences in zooplankton composition and abundance even in close vicinity of sites suggest the importance of local small-scale variations in seagrass habitats in shaping the zooplankton community.
Tieshangang Bay in the Beibu Gulf, Guangxi of China, is a strategic location for pearl farming. Although water pollution has been reported in this bay but the general health of the pearl oyster, Pinctada fucata martensii, farmed there has never been assessed. The present study examined the condition of P. fucata martensii farmed in the Tieshangang Bay by analyzing its length-weight relationship (LWR) and relative condition factor (RCF). A total of 111 specimens were sampled for measuring their shell height and total weight for determining the LWR and RCF. The coefficient of correlation of the LWR was high (R2 = 0.93), significant at 0.01 level. Negative allometric growth (b = 2.7048) was observed. However, P. fucata martensii achieved the expected growth in terms of weight, as determined through the RCF (mean 1.13). Negative allometric growth is commonly reported on the wild Pinctada spp. collected from different regions. Apparently, the water pollution in the Tieshangang Bay did not compromise the general health of the pearl oyster cultured there. Nevertheless, further study on the farm’s surrounding water quality and plankton availability is necessary to investigate the interaction between the growth of the oyster and its culture environment. In conclusion, the P. fucata martensii farmed in the Tieshangang Bay was considered healthy and the bay is still suitable for pearl oyster farming.
Waste heat recovery from shipboard machineries could be a potential source for heat treatment of ballast water. Similar to a shipboard schematic arrangement, a laboratory-scale engine-heat exchanger set-up harvesting waste heat from jacket water and exhaust gases was erected to test the level of species' mortalities. Mortalities were also assessed under experimental conditions for cultured and natural plankton communities at laboratory level. Effect of pump impellers on species' mortalities were also tested. Exposures between 60°C and 70°C for 60 sec resulted in 80-100% mortalities. Mortalities due to pump impeller effects were observed in the range of 70-100% for zooplankton. On the laboratory-scale arrangement, >95% mortalities of phytoplankton, zooplankton and bacteria were recorded. It was demonstrated that the temperature of tropical sea waters used as secondary coolant can be raised to cause species' mortalities, employing engine exhaust gases. The results also indicated that pump impeller effects will enhance species' mortalities. The limitations of the shipboard application of this method would be the large ballast volumes, flow rates and time for treatment.
In Malaysia, harmful algal blooms often occur along the coastal waters of west Sabah, where one of the causative organisms is the toxin-producing dinoflagellate, Pyrodinium bahamense var. compressum. A total of five P. bahamense var. compressum isolates were obtained from four locations and were cultured in f/2 medium. A Polymerase Chain Reaction (PCR) based technique was developed and used to screen for the presence of the dinoflagellate, P. bahamense var. compressum. A dinoflagellate-specific primer pair was designed based on sequences of P. bahamense var. compressum to amplify the 18S small subunit ribosomal DNA (rDNA) sequences. The rDNA of the P. bahamense var. compressum isolates were obtained. A species-specific primer pair was designed to target a 600 bp rDNA sequence of the target dinoflagellate. The primer pair targeting P. bahamense var. compressum did not yield any product with the fifteen algae cultures used as negative controls, but only amplified the rDNA of P. bahamense var. compressum cultures. The PCR method for identification of P. bahamense var. compressum was also applied on twenty field samples collected with plankton net. P. bahamense var. compressum cells were detected by PCR in five field samples and were confirmed by direct sequencing. From this study, a species-specific primer pair was obtained to identify the target species, P. bahamense var. compressum, among the natural complex communities of seawater.