METHODS: The protocol of this systematic review was registered in the PROSPERO International Prospective Register of Systematic Reviews (ID = CRD42020204770). Studies reporting the misidentification of P. knowlesi as P. malariae by microscopy and confirmation of this by molecular methods in MEDLINE, Web of Science and Scopus were reviewed. The risk of bias in the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS). The pooled prevalence and 95% confidence interval (CI) of the misidentification of P. knowlesi as P. malariae by microscopy were estimated using a random effects model. Subgroup analysis of the study sites was performed to demonstrate any differences in the misidentification rates in different areas. Heterogeneity across the included studies was assessed and quantified using Cochran's Q and I2 statistics, respectively. Publication bias in the included studies was assessed using the funnel plot, Egger's test and contour-enhanced funnel plot.
RESULTS: Among 375 reviewed studies, 11 studies with a total of 1569 confirmed P. knowlesi cases in humans were included. Overall, the pooled prevalence of the misidentification of P. knowlesi as P. malariae by microscopy was estimated at 57% (95% CI 37-77%, I2: 99.3%). Subgroup analysis demonstrated the highest rate of misidentification in Sawarak, Malaysia (87%, 95% CI 83-90%, I2: 95%), followed by Sabah, Malaysia (85%, 95% CI 79-92%, I2: 85.1%), Indonesia (16%, 95% CI 6-38%), and then Thailand (4%, 95% CI 2-9%, I2: 95%).
CONCLUSION: Although the World Health Organization (WHO) recommends that all P. malariae-positive diagnoses made by microscopy in P. knowlesi endemic areas be reported as P. malariae/P. knowlesi malaria, the possibility of microscopists misidentifying P. knowlesi as P. malariae is a diagnostic challenge. The use of molecular techniques in cases with malariae-like Plasmodium with high parasite density as determined by microscopy could help identify human P. knowlesi cases in non-endemic countries.
METHODS: Thick and thin blood films were made prior to administration of anti-malarial treatment in patients who were subsequently confirmed as having single species knowlesi infections by PCR assays. Giemsa-stained blood films, prepared from 10 randomly selected patients with a parasitaemia ranging from 610 to 236,000 parasites per microl blood, were examined.
RESULTS: The P. knowlesi infection was highly synchronous in only one patient, where 97% of the parasites were at the late trophozoite stage. Early, late and mature trophozoites and schizonts were observed in films from all patients except three; where schizonts and early trophozoites were absent in two and one patient, respectively. Gametocytes were observed in four patients, comprising only between 1.2 to 2.8% of infected erythrocytes. The early trophozoites of P. knowlesi morphologically resemble those of P. falciparum. The late and mature trophozoites, schizonts and gametocytes appear very similar to those of P. malariae. Careful examinations revealed that some minor morphological differences existed between P. knowlesi and P. malariae. These include trophozoites of knowlesi with double chromatin dots and at times with two or three parasites per erythrocyte and mature schizonts of P. knowlesi having 16 merozoites, compared with 12 for P. malariae.
CONCLUSION: Plasmodium knowlesi infections in humans are not highly synchronous. The morphological resemblance of early trophozoites of P. knowlesi to P. falciparum and later erythrocytic stages to P. malariae makes it extremely difficult to identify P. knowlesi infections by microscopy alone.
METHODS: A cross-sectional survey was conducted in six villages in Langkat district, North Sumatera Province in June 2019. Data were recorded using a standardized questionnaire. Finger pricked blood samples were obtained for malaria examination using rapid diagnostic test, thick and thin blood smears, and polymerase chain reaction.
RESULTS: A total of 342 individuals were included in the study. Of them, one (0.3%) had a microscopic Plasmodium malariae infection, no positive RDT examination, and three (0.9%) were positive for P. malariae (n = 1) and Plasmodium knowlesi (n = 2). The distribution of bed net ownership was owned by 40% of the study participants. The participants had a house within a radius of 100-500 m from the forest (86.3%) and had the housing material of cement floor (56.1%), a tin roof (82.2%), wooden wall (35.7%), bamboo wall (28.1%), and brick wall (21.6%).
CONCLUSION: Malaria incidence has substantially decreased in Langkat, North Sumatera, Indonesia. However, submicroscopic infection remains in the population and may contribute to further transmission. Surveillance should include the detection of microscopic undetected parasites, to enable the achievement of malaria elimination.
METHODS: An outbreak was declared following the detection of P. malariae in July 2020 and active case detection for malaria was performed by collecting blood samples from residents residing within 2 km radius of Moyog village. Vector prevalence and the efficacy of residual insecticides were determined. Health awareness programmes were implemented to prevent future outbreaks. A survey was conducted among villagers to understand risk behaviour and beliefs concerning malaria.
RESULTS: A total of 5254 blood samples collected from 19 villages. Among them, 19 P. malariae cases were identified, including the index case, which originated from a man who returned from Indonesia. His return from Indonesia and healthcare facilities visit coincided with the movement control order during COVID-19 pandemic when the healthcare facilities stretched its capacity and only serious cases were given priority. Despite the index case being a returnee from a malaria endemic area presenting with mild fever, no malaria test was performed at local healthcare facilities. All cases were symptomatic and uncomplicated except for a pregnant woman with severe malaria. There were no deaths; all patients recovered following treatment with artemether-lumefantrine combination therapy. Anopheles balabacensis and Anopheles barbirostris were detected in ponds, puddles and riverbeds. The survey revealed that fishing and hunting during night, and self-treatment for mild symptoms contributed to the outbreak. Despite the index case being a returnee from a malaria-endemic area presenting with mild fever, no malaria test was performed at local healthcare facilities.
CONCLUSION: The outbreak occurred during a COVID-19 movement control order, which strained healthcare facilities, prioritizing only serious cases. Healthcare workers need to be more aware of the risk of malaria from individuals who return from malaria endemic areas. To achieve malaria elimination and prevention of disease reintroduction, new strategies that include multisectoral agencies and active community participation are essential for a more sustainable malaria control programme.