Displaying all 14 publications

Abstract:
Sort:
  1. Elbestawy AR, Ellakany HF, Abd El-Hamid HS, Gado AR, Geneedy AM, Noreldin AE, et al.
    Avian Dis, 2021 09;65(3):407-413.
    PMID: 34427415 DOI: 10.1637/0005-2086-65.3.407
    Despite the vast Egyptian poultry production, scanty information is available concerning the infection of haemprotozoan parasites as pathogens in commercial broilers. In the present study, we provided the first detection of leucocytozoonosis in five broiler chicken flocks in El-Beheira Egyptian governorate. Despite the low mortality rates in the affected flocks (0.3%-1% as a 5-day mortality), severe postmortem (hemorrhagic spots and scars) and histopathologic lesions appeared in different organs including skeletal muscles, liver, kidney, pancreas, abdominal cavity, and bursa of Fabricius. Evaluation of blood smears revealed gametocytes in erythrocytes and leukocytes. Conventional reverse transcriptase-PCR and partial sequence analysis of mitochondrial cytochrome oxidase b gene detected Leucocytozoon caulleryi. GenBank accession numbers of the five Egyptian L. caulleryi isolates were obtained. The five L. caulleryi were 99.9% identical to each other and 99.14% similar to the L. caulleryi mitochondrial DNA gene of Asian strains from India, Japan, Malaysia, South Korea, Taiwan, and Thailand.
    Matched MeSH terms: Protozoan Infections, Animal*
  2. Freeman MA
    Parasitology, 2009 Aug;136(9):967-80.
    PMID: 19549352 DOI: 10.1017/S0031182009006507
    Unusual tumour-like pathologies caused by mysterious cells termed 'X-cells' have been reported from numerous fish groups worldwide. After nearly 100 years of research, the tumour-like growths have recently been shown to be caused by a protozoan parasite. In the present study, histopathology and small subunit ribosomal DNA (SSU rDNA) sequences are used to assess whether the X-cell parasite infecting Atlantic dab Limanda limanda L. is distinct from the X-cell parasite infecting Japanese flounder and goby, and to determine their systematic position within the protists. SSU rDNA from Scottish dab was 89.3% and 86.7% similar to Japanese X-cell sequences from flounder and goby respectively, indicating that the parasite infecting dab in the Atlantic is distinct from the Pacific species. Histological studies revealed significant gill pathology and demonstrated the precise location of the parasites within the gill tissues using specific in situ hybridization probes. Phylogenetic analyses showed that the X-cell parasites from Scotland and Japan form a monophyletic group within the Myzozoa, and are basal alveolates. However, ultrastructure of X-cells from dab fails to confirm this systematic placement.
    Matched MeSH terms: Protozoan Infections, Animal/parasitology*
  3. Lim YA, Ngui R, Shukri J, Rohela M, Mat Naim HR
    Vet Parasitol, 2008 Oct 20;157(1-2):154-9.
    PMID: 18723289 DOI: 10.1016/j.vetpar.2008.07.015
    A survey was undertaken to investigate the prevalence of intestinal parasites from different groups of mammals housed in a zoological garden in Malaysia. A total of 197 faecal samples were collected randomly from various primates (99), hoofed mammals (70) and feline (28). It was discovered that 89.3% of feline, 54.5% of primates and 45.7% of hoofed mammals were infected with intestinal parasites. Intestinal parasites found in primates were Balantidium coli (19.2%), Cryptosporidium spp. (14.1%), hookworm (10.1%), Trichuris spp. (5.1%), Ascaris (4.0%) and Blastocystis spp. (2.0%). For hoofed mammals, hookworm had the highest prevalence (34.3%) followed by Trichuris spp. and Cryptosporidium spp. (5.7%). Meanwhile, for feline, Toxocara cati was the most prevalent (64.3%), followed by Cryptosporidium spp. (14.3%), Spirometra spp. (7.1%), and hookworm (3.6%). Animals that were infected were all asymptomatic with low parasite load. Routine monitoring of the presence of parasites in animals kept in the zoo is imperative in assisting zoo management in the formulation and implementation of preventive and control measures against the spread of infectious parasitic diseases among animals within the zoo or to humans.
    Matched MeSH terms: Protozoan Infections, Animal/parasitology*
  4. Molnár K, Shaharom-Harrison F, Székely C
    Syst Parasitol, 2003 May;55(1):11-8.
    PMID: 12815211
    Ninety-five specimens of 14 freshwater fish species from small streams in the Kuala Terengganu district and the Lake Kenyir Reservoir, Malaysia, were surveyed for coccidian infections. Six fish species proved to be infected with apicomplexans belonging to the genus Goussia. In all of these fishes Goussia species were found in unsporulated and semisporulated stages. Oöcysts of four species inhabiting the intestinal epithelium became sporulated in tap-water within 24 hours. In two fish species sporulation failed and only unsporulated oöcysts were recorded in the intestine. Three of the intestinal species finishing sporulation proved to be new to science and were described as Goussia malayensis n. sp., G. bettae n. sp. and G. pogonognathi n. sp. from Apocheilus panchax, Betta splendens and Hemirhamphodon pogonognatus, respectively. The fourth species, found in Trichogaster pectoralis, was identified as G. trichogasteri Székely & Molnár, 1992, a species known from aquarium-cultured T. trichopterus.
    Matched MeSH terms: Protozoan Infections, Animal/epidemiology; Protozoan Infections, Animal/parasitology*
  5. Székely C, Shaharom-Harrison F, Cech G, Mohamed K, Molnár K
    Dis Aquat Organ, 2009 Jan 28;83(1):49-57.
    PMID: 19301636 DOI: 10.3354/dao01990
    We describe new myxosporean species from Malaysian fishes cultured in pond farms and net-cages. Myxobolus omari sp. nov. and M. leptobarbi sp. nov. were found in the muscles of Pangasianodon hypophthalmus and Leptobarbus hoevenii, respectively, while plasmodia and spores of Thelohanellus zahrahae sp. nov. and Henneguya daoudi sp. nov. were detected in the gills of Barbonymus gonionotus and Trichogaster trichopterus, respectively. Plasmodia and spores found in these fishes differed from the known myxosporean species in respect of their morphology, tissue tropism and 18S rDNA structure. No major pathological changes were found, but in the future these species might pose a potential threat to more intensified fish culture.
    Matched MeSH terms: Protozoan Infections, Animal/epidemiology; Protozoan Infections, Animal/parasitology*
  6. Molnár K, Székely C, Mohamed K, Shaharom-Harrison F
    Dis Aquat Organ, 2006 Mar 2;68(3):219-26.
    PMID: 16610587
    Cage-cultured Asian redtail catfish Hemibagrus nemurus (Valenciennes, 1840), a popular food fish in Southeast Asia, proved to be infected by 3 myxozoan species. All the 3 species belonged to the genus Henneguya: 2 were identified as H. mystusia Sarkar, 1985 and H. hemibagri Tchang et Ma, 1993, while the other was described as H. basifilamentalis sp. n. All plasmodia were found in the gills and were characterised by a specific site selection. H. mystusia formed plasmodia in the multi-layered epithelium between the gill lamellae and in the non-lamellar edge of the gill filaments, while H. hemibagri developed in the capillary network of the lamellae. H. basifilamentalis sp. n. had large oval plasmodia located deep among the filaments just above the gill arch.
    Matched MeSH terms: Protozoan Infections, Animal/parasitology*; Protozoan Infections, Animal/pathology
  7. Molnár K, Székely C, Mohamed K, Shaharom-Harrison F
    Dis Aquat Organ, 2006 Mar 2;68(3):209-18.
    PMID: 16610586
    Cage-cultured sutchi catfish Pangasius hypophthalmus (Sauvage, 1878), a favourite food fish in Southeast Asia, proved to be infected by 6 myxozoan species. Three species belonged to the genus Hennegoides (H. berlandi, H. malayensis, and H. pangasii), 1 to Henneguya (H. shariffi) and 2 to Myxobolus (M. baskai, and M. pangasii). Five myxozoans infected the gills and 1 was found on the spleen. Myxozoans infecting the gills were characterised by a specific site selection. H. shariffi sp. n. and H. berlandi sp. n. formed plasmodia in the multi-layered epithelium of the gill filaments. Of the 2 vascular species H. pangasii sp. n. developed in the gill arteries, while M. baskai sp. n. infected the capillary network of the gill lamellae. Plasmodia of H. malayensis sp. n. were found inside the cartilaginous gill rays of the filaments. Large plasmodia of M. pangasii sp. n. were located in a groove of the spleen but they affected only the serosa layer covering the spleen.
    Matched MeSH terms: Protozoan Infections, Animal/parasitology*; Protozoan Infections, Animal/pathology
  8. Barraclough RK, Robert V, Peirce MA
    Parasite, 2008 Jun;15(2):105-10.
    PMID: 18642502
    Leucocytozoon coracinae sp. nov. is described from the avian family Campephagidae and Hepatozoon apodis sp. nov. from the Apodidae. The distribution of these parasites within their respective families is discussed.
    Matched MeSH terms: Protozoan Infections, Animal/parasitology*
  9. Muul I, Yap LF, Lim BL
    PMID: 4203491
    Matched MeSH terms: Protozoan Infections, Animal*
  10. Rajamanickam C, Wiesenhutter E, Zin FM, Hamid J
    Vet Parasitol, 1985 Jan;17(2):151-7.
    PMID: 3922103
    In 3 urban areas in Selangor, Peninsular Malaysia between 1973 and 1981, blood from 4084 dogs was examined for haematozoa. The following frequencies were found: Babesia gibsoni 17.7%; microfilariae of Dirofilaria immitis 9.6%; Hepatozoon canis 1.2%; B. canis 1.1%; Ehrlichia canis 0.2%; Trypanosoma evansi 0.1%. A detailed examination of B. gibsoni infections and microfilariasis due to D. immitis with regards to monthly distribution, breed frequency, sex and age, revealed that pedigree and non-pedigree dogs were equally susceptible to Babesia and microfilariae infections.
    Matched MeSH terms: Protozoan Infections, Animal*
  11. Olival KJ, Stiner EO, Perkins SL
    J Parasitol, 2007 Dec;93(6):1538-40.
    PMID: 18314711 DOI: 10.1645/GE-1208.1
    Three species of flying fox (Pteropus hypomelanus, P. vampyrus, and P. lylei) from Malaysia and Vietnam were screened for apicomplexan parasites by thin blood smears and polymerase chain reaction. Only 1 of 16 bats sampled from 3 localities in southeast Asia was found to be infected (P. hypomelanus from Pulau Pangkor, Malaysia). We observed micro- and macrogametocytes, with morphology consistent with Hepatocystis sp. parasites, using light microscopy. Phylogenetic analysis of the cytochrome b gene showed that the parasite from P. hypomelanus groups with 2 published sequences from Hepatocystis spp., including one from Cynopterus brachyotis, another fruit bat in the Pteropodidae.
    Matched MeSH terms: Protozoan Infections, Animal/parasitology*
  12. Fong YL, Liat LB, de Witt GF, Krishnasamy M, Sivanandam S, Foong PY
    PMID: 415370
    Matched MeSH terms: Protozoan Infections, Animal*
  13. Kilbourn AM, Karesh WB, Wolfe ND, Bosi EJ, Cook RA, Andau M
    J. Wildl. Dis., 2003 Jan;39(1):73-83.
    PMID: 12685070
    Baseline data on health of free-ranging wildlife is essential to evaluate impacts of habitat transformation and wildlife translocation, rehabilitation, and reintroduction programs. Health information on many species, especially great apes, is extremely limited. Between 1996 and 1998, 84 free-ranging orangutans captured for translocation, underwent a complete health evaluation. Analogous data were gathered from 60 semi-captive orangutans in Malaysia. Baseline hematology and serology; vitamin, mineral and pesticide levels; and results of health evaluations, including physical examination, provide a baseline for future monitoring. Free-ranging and semi-captive orangutans shared exposure to 11 of 47 viruses. The semi-captive orangutans had significantly higher prevalence of antibodies to adenovirus (P < 0.0005) and rota (SA 11) virus (P < 0.008). More free-ranging than semi-captive animals had antibodies to Japanese encephalitis virus (P < 0.08) and foamy virus (P = 0.05). Exposure to parainfluenza and langat viruses was detected exclusively in semi-captive animals and exposure to sinbis virus was only found in free-ranging orangutans. There was evidence of exposure to respiratory syncytial virus, coxsackie virus, dengue virus, and zika virus in both groups. Ebstein-Barr virus was ubiquitous in both groups. Prevalence of antibodies against mumps virus changed from 0% in 1996 to 45% in 1998. No antibodies were detected to many important zoonotic viral pathogens, including herpesvirus and hepatitis virus. Prevalence of Balantidium coli and Plasmodium pitheci infections and exposure to mycobacterium was higher in the semi-captive animals. Differences in exposure to pathogens between the groups may be due to environmental factors including differences in exposures to other species, habitat quality, nutritional status, and other potential stressors. Differences in health parameters between captive and free-ranging orangutans need to be considered when planning conservation areas, translocation procedures, and rehabilitation protocols. Because survival of the orangutan is linked to animal and ecosystem health, results of this study will assist wildlife conservation programs by providing baseline health information.
    Matched MeSH terms: Protozoan Infections, Animal/epidemiology*
  14. Dissanaike AS, Poopalachelvam M
    PMID: 809845
    Sarcocystis booliati n.sp. is described from the moonrat Echinosorex gymnurus (Mammalia, Insectivora) from West Malaysia. The cysts are very thin-walled, not visible to the naked eye, and have no trabeculae or cytophaneres. They are found in skeletal but not heart muscle. The zoites are small, 5-8 by 2-3 mum with a mean of 6.5 by 2.2 mum, in dry fixed smears. Octoplasma garnhami n.gen. n.sp., a parasite of undetermined taxonomic status but belonging to the Coccidiasina, Apicomplexa, is also described from the same host. Only schizononts and pseudocysts with typically 8 zoites, have so far been seen in monocytes of the spleen and liver. The zoites are large, 15 by 3 mum and have a distinct nucleolus even in dry-fixed smears.
    Matched MeSH terms: Protozoan Infections, Animal*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links