Displaying all 4 publications

Abstract:
Sort:
  1. Ghani NA, Sulaiman J, Ismail Z, Chan XY, Yin WF, Chan KG
    Sensors (Basel), 2014;14(4):6463-73.
    PMID: 24721765 DOI: 10.3390/s140406463
    Two microbial isolates from a Malaysian shoreline were found to be capable of degrading N-acylhomoserine lactones. Both Matrix Assisted Laser Desorption Ionization-Time of Flight-Mass Spectrometry and 18S rDNA phylogenetic analyses confirmed that these isolates are Rhodotorula mucilaginosa. Quorum quenching activities were detected by a series of bioassays and rapid resolution liquid chromatography analysis. The isolates were able to degrade various quorum sensing molecules namely N-hexanoyl-L-homoserine lactone (C6-HSL), N-(3-oxo-hexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-(3-hydroxyhexanoyl)-L-homoserine lactone (3-hydroxy-C6-HSL). Using a relactonisation assay to verify the quorum quenching mechanism, it is confirmed that Rh. mucilaginosa degrades the quorum sensing molecules via lactonase activity. To the best of our knowledge, this is the first documentation of the fact that Rh. mucilaginosa has activity against a broad range of AHLs namely C6-HSL, 3-oxo-C6-HSL and 3-hydroxy-C6-HSL.
    Matched MeSH terms: Rhodotorula/isolation & purification*
  2. Mohd Nor F, Tan LH, Na SL, Ng KP
    Mycopathologia, 2015 Aug;180(1-2):95-8.
    PMID: 25739670 DOI: 10.1007/s11046-015-9879-0
    Rhodotorula species are increasingly being identified as a cause of fungal infection in the central nervous system, especially in patients with compromised immunity. The diagnosis could easily be missed due to low index of suspicion, as cryptococcus meningitis and cerebral toxoplasmosis are more common amongst immunocompromised hosts. To date, there are six cases of Rhodotorula-related meningitis reported, and three are associated with human immunodeficiency virus infection. In this report, a case of a Malaysian male with underlying human immunodeficiency virus infection who developed Rhodotorula mucilaginosa meningitis is presented. High-grade fever and severe headaches were the complaints presented in three previous case reports. India ink and nigrosin stainings were performed in the two previous reports and both revealed positive results. R. mucilaginosa were isolated from the culture of the patient's cerebrospinal fluid in all three previous reports. Predominant lymphocyte infiltration in the cerebrospinal fluid examination was documented in two reports. CD4 counts were above 100/µl in two previously published reports, while another report documented CD4 count as 56/µl. Amphotericin B and itraconazole are identified to be the first line of antifungal used and as the maintenance therapy, respectively. The possibility of relapse cannot be excluded as it was reported in the first report. It was also revealed that the current case has almost similar clinical presentation and therapeutic outcome as compared to the published reports, but some differences in diagnostic details were to be highlighted.
    Matched MeSH terms: Rhodotorula/isolation & purification*
  3. Sukmawati D, Shabrina A, Indrayanti R, Kurniati TH, Nurjayadi M, Hidayat I, et al.
    Recent Pat Food Nutr Agric, 2020;11(3):219-228.
    PMID: 32324527 DOI: 10.2174/2212798411666200423101159
    BACKGROUND: Apples often experience postharvest damage due to being attacked by mold organisms. Several groups of molds such as Aspergillus sp., Penicilium expansum, Botrytis cinerea, and Venturia sp. can cause a serious postharvest disease exhibited as watery regions where areas of blue-green tufts of spores develop. Current methods using fungicides to control pathogenic fungi can cause resistance if applied in the long term. An alternative procedure using yeast as a biological agent has been found.

    OBJECTIVE: The aim of this study is to screen potential yeast, which has the ability to inhibit the growth of Aspergillus brasielensis (isolate A1) and Aspergillus flavus section flavi (isolate A17) isolated from apple fruits.

    METHODS: Antagonism test using YMA dual culture medium using in vitro assays and ITS rDNA identification were performed.

    RESULTS: The result showed that 3 out of 19 yeast isolated from Cerbera manghas L, T1, T3 and T4, demonstrated the potential ability as a biocontrol agent. ITS rDNA identification demonstrated that T1 has a similarity to Rhodotorula mucilaginosa while T3 and T4 were identified as Aureobasidium sp. nov. The 3 isolates exhibited the ability to reduce the growth of A. brasiliensis sensu lato better than dithane 0.3% with a Disease Incidence (DI) of 100% and a Disease Severity (DS) value of 45%. Only isolate T1 and T3 were able to reduce decay symptoms in apples inoculated with A. flavus sensu lato (with DO and DS were 100% and 25%, respectively) compared to dithane pesticides 0.3%.

    CONCLUSION: This study indicated that competition between nutrients occurs between pathogenic molds and under-yeast in vitro and in vivo conditions. However, further studies in the future might be able to elucidate the 'killer' activity and interaction with the pathogen cells and the bio-product production using Rhodotorula mucilaginosa and Aureoubasidium namibiae strains to control postharvest diseases.

    Matched MeSH terms: Rhodotorula/isolation & purification*
  4. Rahim MB, Syed MA, Shukor MY
    J Basic Microbiol, 2012 Oct;52(5):573-81.
    PMID: 22144174 DOI: 10.1002/jobm.201100116
    As well as for chemical and environmental reasons, acrylamide is widely used in many industrial applications. Due to its carcinogenicity and toxicity, its discharge into the environment causes adverse effects on humans and ecology alike. In this study, a novel acrylamide-degrading yeast has been isolated. The isolate was identified as Rhodotorula sp. strain MBH23 using ITS rRNA analysis. The results showed that the best carbon source for growth was glucose at 1.0% (w/v). The optimum acrylamide concentration, being a nitrogen source for cellular growth, was at 500 mg l(-1). The highest tolerable concentration of acrylamide was 1500 mg l(-1) whereas growth was completely inhibited at 2000 mg l(-1). At 500 mg l(-1), the strain MBH completely degraded acrylamide on day 5. Acrylic acid as a metabolite was detected in the media. Strain MBH23 grew well between pH 6.0 and 8.0 and between 27 and 30 °C. Amides such as 2-chloroacetamide, methacrylamide, nicotinamide, acrylamide, acetamide, and propionamide supported growth. Toxic heavy metals such as mercury, chromium, and cadmium inhibited growth on acrylamide.
    Matched MeSH terms: Rhodotorula/isolation & purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links