A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.
The results of serotyping of 10 953 salmonella isolates from humans over a 10-year period, 1973-82 at the Bacteriology Division, Institute for Medical Research, Malaysia are presented. A total of 104 serotypes from 22 'O' groups were encountered; 95 isolates were considered untypable. The three most predominant serotypes, namely Salmonella typhi, S. typhimurium and S. weltevreden together accounted for 54.1% of all isolates whilst the 25 most frequent serotypes accounted for 93.6% of the total. Whilst the commoner serotypes occurred regularly throughout the study period, the rarer ones tended to appear only in one year, when they might be associated with an outbreak, and never again. The pattern of serotypes, though quite similar to the one seen in neighbouring Singapore, is different from those experienced in other places such as Hong Kong, Jakarta, Bangladesh and Manchester.
A total of 860 Salmonella isolations were made in Peninsular Malaysia from 15 animal species (domestic and wild), eggs, molluscs, flies, and animal feed. The isolations were distributed among 31 serotypes in eight groups. The most common serotype isolated was Salmonella pullorum, followed by S. choleraesuis and S. infantis. S. typhimurium had the widest zoological distribution. The importance of controlling animal salmonellosis is emphasized.
Persons infected with human immunodeficiency virus (HIV) have an increased risk of salmonellosis when compared to the general population. We describe seven such patients with Salmonella bacteremia, of whom two had recurrent salmonellosis. In the latter two cases the infection was unusually severe, characterized by widespread infection, bacteremia and relapse, despite standard antimicrobial therapy. HIV-infected individuals will benefit from education on the source of Salmonella, mode of acquisition and prevention through safe food handling and food preparation practices. Because of the difficulty of eradicating Salmonella infection in patients with acquired immunodeficiency syndrome, long-term suppressive treatment with antimicrobials is warranted.
The suitability of a PCR procedure using a pair of primers targeting the hilA gene was evaluated as a means of detecting Salmonella species. A total of 33 Salmonella strains from 27 serovars and 15 non-Salmonella strains from eight different genera were included. PCR with all the Salmonella strains produced a 784 bp DNA fragment that was absent from all the non-Salmonella strains tested. The detection limit of the PCR was 100 pg with genomic DNA and 3 x 10(4) c.f.u. ml(-1) with serial dilutions of bacterial culture. An enrichment-PCR method was further developed to test the sensitivity of the hilA primers for the detection of Salmonella in faecal samples spiked with different concentrations of Salmonella choleraesuis subsp. choleraesuis serovar Typhimurium. The method described allowed the detection of Salmonella Typhimurium in faecal samples at a concentration of 3 x 10(2) c.f.u. ml(-1). In conclusion, the hilA primers are specific for Salmonella species and the PCR method presented may be suitable for the detection of Salmonella in faeces.
Rapid detection of foodborne pathogens is crucial as ingestion of contaminated food products may endanger human health. Thus, the objective of this study was to develop a biosensor using reduced graphene oxide-carbon nanotubes (rGO-CNT) nanocomposite via the hydrothermal method for accurate and rapid label-free electrochemical detection of pathogenic bacteria such as Salmonella enterica. The rGO-CNT nanocomposite was characterized using Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction and transmission electron microscopy. The nanocomposite was dropped cast on the glassy carbon electrode and further modified with amino-modified DNA aptamer. The resultant ssDNA/rGO-CNT/GCE aptasensor was then used to detect bacteria by using differential pulse voltammetry (DPV) technique. Synergistic effects of aptasensor was evident through the combination of enhanced electrical properties and facile chemical functionality of both rGO and CNT for the stable interface. Under optimal experimental conditions, the aptasensor could detect S. Typhimurium in a wide linear dynamic range from 101 until 108 cfu mL-1 with a 101 cfu mL-1 of the limit of detection. This aptasensor also showed good sensitivity, selectivity and specificity for the detection of microorganisms. Furthermore, we have successfully applied the aptasensor for S. Typhimurium detection in real food samples.
Male-specific RNA coliphages (FRNA) have been recommended as indicators of fecal contamination and of the virological quality of water. In this study, 16 river water and 183 animal fecal samples were examined for the presence of FRNA coliphages by a plaque assay using Salmonella typhimurium WG49 and WG25 to differentiate between male-specific and somatic phages, a RNase spot test to differentiate between DNA and RNA phages and a reverse transcriptase-polymerase chain reaction (RT-PCR) for the specific identification of FRNA phages. The overall recovery rate for F-specific coliphages was 8.0%. (4.4% from animal fecal matter and 50% from river water samples). Plaque counts were generally low (< 6 x 10(2) pfu per g feces or ml water), with FRNA (6.5%) and Male-specific DNA coliphages (FDNA) (7.0%) phages occurring at almost equal frequencies. The RT-PCR was positive in all FRNA plaques and was able to identify FRNA phages in mixed populations of FRNA, FDNA and somatic phages.
Salmonella Typhimurium is an important nontyphoidal Salmonella serovar associated with foodborne diseases in many parts of the world. This organism is the major causative agent of nontyphoidal salmonellosis in Malaysia. We aimed to investigate the genetic profiles of the strains isolated from clinical, zoonotic, and dietary sources in Malaysia using multilocus variable number tandem repeat analysis (MLVA) and pulsed-field gel electrophoresis (PFGE). By focusing on the 5 common variable number tandem repeat (VNTR) loci, we found that PFGE (D = 0.99) was more discriminative than MLVA (D = 0.76). The low MLVA score might be because of a lack of VNTR loci STTR6 (81.0%) and STTR10pl (76.2%). Both subtyping methods suggested that our S. Typhimurium strains were largely endemic with limited genetic variation. Furthermore, we observed that biphasic S. Typhimurium strains were dominant (99%) and multidrug resistance was prevalent (50%) within our sample pool. The most frequently observed phenotypes were resistance to compound sulfonamides (49%), tetracycline (51%), and streptomycin (52%). In this study, we documented the genetic relationship, antimicrobial resistance characteristics, and flagellar-phase dominance among S. Typhimurium strains found in Malaysia.
In this study, an amino-modified aptasensor using multi-walled carbon nanotubes (MWCNTs)-deposited ITO electrode was prepared and evaluated for the detection of pathogenic Salmonella bacteria. An amino-modified aptamer (ssDNA) which binds selectively to whole-cell Salmonella was immobilised on the COOH-rich MWCNTs to produce the ssDNA/MWCNT/ITO electrode. The morphology of the MWCNT before and after interaction with the aptamers were observed using scanning electron microscopy (SEM). Cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to investigate the electrochemical properties and conductivity of the aptasensor. The results showed that the impedance measured at the ssDNA/MWCNT/ITO electrode surface increased after exposure to Salmonella cells, which indicated successful binding of Salmonella on the aptamer-functionalised surface. The developed ssDNA/MWCNT/ITO aptasensor was stable and maintained linearity when the scan rate was increased from 10 mV s-1 to 90 mV s-1. The detection limit of the ssDNA/MWCNT/ITO aptasensor, determined from the sensitivity analysis, was found to be 5.5 × 101 cfu mL-1 and 6.7 × 101 cfu mL-1 for S. Enteritidis and S. Typhimurium, respectively. The specificity test demonstrated that Salmonella bound specifically to the ssDNA/MWCNT/ITO aptasensor surface, when compared with non-Salmonella spp. The prepared aptasensor was successfully applied for the detection of Salmonella in food samples.