METHODS: A total of 128 (64 males, 64 females) non-smoking healthy young subjects were randomly sampled for the study from the Kelantanese students' population of the University Sains Malaysia, Kota Bharu Campus, Kelantan, Malaysia. The study population (20-25 yr age group) had similar socio-economic background. Each subject filled up the ATS (1978) questionnaire to record their personal demographic data, health status and consent to participate in the study. Subjects with any history of pulmonary diseases were excluded from the study.
RESULTS: The pulmonary function measurements exhibited significantly higher values among males than the females. FEV 1% did not show any significant inter-group variation probably because the parameter expresses FEV 1 as a percentage of FVC. FVC and FEV 1 exhibited significant correlations with body height and body mass among males whereas in the females exhibited significant correlation with body mass, body weight and also with age. FEV 1% exhibited significant correlation with body height and body mass among males and with body height in females. FEF 25-75% did not show any significant correlation except with body height among females. However, PEFR exhibited significant positive correlation with all the physical parameters except with age among the females. On the basis of the existence of significant correlation between different physical parameters and pulmonary function variables, simple and multiple regression norms have been computed.
INTERPRETATION & CONCLUSIONS: From the present investigation it can be concluded that Kelantanese Malaysian youths have normal range of pulmonary function in both the sexes and the computed regression norms may be used to predict the pulmonary function values in the studied population.
METHODS: This cross-sectional study was conducted at Hospital Tuanku Fauziah, Perlis, Malaysia from August 2015 to April 2016. FEV1/FEV6 and FEV1/FVC results of 117 subjects were analysed. Demographic data and spirometric variables were tabulated. A scatter plot graph with Spearman's correlation was constructed for the correlation between FEV1/FEV6 and FEV1/FVC. The sensitivity, specificity, positive and negative predictive values of FEV1/FEV6 were determined with reference to the gold standard of FEV1/FVC ratio <0.70. Receiver-operator characteristic (ROC) curve analysis and Kappa statistics were used to determine the FEV1/FEV6 ratio in predicting an FEV1/FVC ratio <0.70.
RESULTS: Spearman's correlation with r = 0.636 (P<0.001) was demonstrated. The area under the ROC curve was 0.862 (95% confidence interval [CI]: 0.779 - 0.944, P<0.001). The FEV1/FEV6 cut-off with the greatest sum of sensitivity and specificity was 0.75. FEV1/FEV6 sensitivity, specificity, positive and negative predictive values were 93.02%, 67.74%, 88.89% and 77.78% respectively. There was substantial agreement between the two diagnostic cut-offs (κ = 0.634; 95% CI: 0.471 - 0.797, P<0.001) CONCLUSIONS: The FEV1/FEV6 ratio can be considered to be a good alternative to the FEV1/FVC ratio for screening of COPD. Larger multicentre study and better education on spirometric techniques can validate similar study outcome and establish reference values appropriate to the population being studied.
METHODS: The Norfolk (UK) based European Prospective Investigation into Cancer (EPIC-Norfolk) recruited 25,639 participants between 1993 and 1997. FEV1 measured by portable spirometry, was categorized into sex-specific quintiles. Mortality and morbidity from all causes, cardiovascular disease (CVD) and respiratory disease were collected from 1997 up to 2015. Cox proportional hazard regression analysis was used with adjustment for socio-economic factors, physical activity and co-morbidities.
RESULTS: Mean age of the population was 58.7 ± 9.3 years, mean FEV1 for men was 294± 74 cL/s and 214± 52 cL/s for women. The adjusted hazard ratios for all-cause mortality for participants in the highest fifth of the FEV1 category was 0.63 (0.52, 0.76) for men and 0.62 (0.51, 0.76) for women compared to the lowest quintile. Adjusted HRs for every 70 cL/s increase in FEV1 among men and women were 0.77 (p < 0.001) and 0.68 (p < 0.001) for total mortality, 0.85 (p<0.001) and 0.77 (p<0.001) for CVD and 0.52 (p <0.001) and 0.42 (p <0.001) for respiratory disease.
CONCLUSIONS: Participants with higher FEV1 levels had a lower risk of CVD and all-cause mortality. Measuring the FEV1 with a portable handheld spirometry measurement may be used as a surrogate marker for cardiovascular risk. Every effort should be made to identify those with poorer lung function even in the absence of cardiovascular disease as they are at greater risk of total and CV mortality.