Displaying all 5 publications

Abstract:
Sort:
  1. Hadibarata T, Syafiuddin A, Al-Dhabaan FA, Elshikh MS, Rubiyatno
    Bioprocess Biosyst Eng, 2018 May;41(5):621-632.
    PMID: 29349549 DOI: 10.1007/s00449-018-1897-0
    Herein, we systematically reported the capability of T. harzianum RY44 for decolorization of Mordant orange-1. The fungi strains were isolated from the Universiti Teknologi Malaysia tropical rain forest. For initial screening, the decolorization was conducted using 50 strains of the fungi for 20 days incubation time and the best performance was selected. Then, the decolorization capability and fungal biomass were evaluated using different dye concentrations, namely, 0, 50, 75 and 100 ppm. Effects of the carbon sources (fructose, glucose, and galactose), nitrogen sources (ammonium nitrate, ammonium sulfate and yeast extract), surfactant (tween 80), aromatic compounds (benzoic acid, catechol and salicylic acid), and pH on the decolorization efficiency were examined. This study has found that the employed carbon sources, nitrogen sources, and aromatic compounds strongly enhance the decolorization efficiency. In addition, increasing the surfactant volume and pH generally decreased the decolorization efficiencies from 19.5 to 9.0% and 81.7 to 60.5%, respectively. In the mechanism philosophy, the present work has found that Mordant orange-1 were initially degraded by T. harzianum RY44 to benzoic acid and finally transformed into salicylic acid.
    Matched MeSH terms: Trichoderma/isolation & purification
  2. Tan YC, Wong MY, Ho CL
    Plant Physiol Biochem, 2015 Nov;96:296-300.
    PMID: 26322853 DOI: 10.1016/j.plaphy.2015.08.014
    Basal stem rot is one of the major diseases of oil palm (Elaies guineensis Jacq.) caused by pathogenic Ganoderma species. Trichoderma and mycorrhizae were proposed to be able to reduce the disease severity. However, their roles in improving oil palm defence system by possibly inducing defence-related genes in the host are not well characterized. To better understand that, transcript profiles of eleven putative defence-related cDNAs in the roots of oil palm inoculated with Trichoderma harzianum T32 and mycorrhizae at different time points were studied. Transcripts encoding putative Bowman-Birk protease inhibitor (EgBBI2) and defensin (EgDFS) increased more than 2 fold in mycorrhizae-treated roots at 6 weeks post inoculation (wpi) compared to those in controls. Transcripts encoding putative dehydrin (EgDHN), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), type 2 ribosome inactivating protein (EgT2RIP), and EgDFS increased in the oil palm roots treated with T. harzianum at 6 and/or 12 wpi compared to those in the controls. Some of these genes were also expressed in oil palm roots treated with Ganoderma boninense. This study provides an insight of some defence-related genes induced by Trichoderma and mycorrhizae, and their roles as potential agents to boost the plant defence system.
    Matched MeSH terms: Trichoderma/isolation & purification
  3. López-Quintero CA, Atanasova L, Franco-Molano AE, Gams W, Komon-Zelazowska M, Theelen B, et al.
    Antonie Van Leeuwenhoek, 2013 Nov;104(5):657-74.
    PMID: 23884864 DOI: 10.1007/s10482-013-9975-4
    The diversity of Trichoderma (Hypocreales, Ascomycota) colonizing leaf litter as well as the rhizosphere of Garcinia macrophylla (Clusiaceae) was investigated in primary and secondary rain forests in Colombian Amazonia. DNA barcoding of 107 strains based on the internal transcribed spacers 1 and 2 (ITS1 and 2) of the ribosomal RNA gene cluster and the partial sequence of the translation elongation factor 1 alpha (tef1) gene revealed that the diversity of Trichoderma was dominated (71 %) by three common cosmopolitan species, namely Trichoderma harzianum sensu lato (41 %), Trichoderma spirale (17 %) and Trichoderma koningiopsis (13 %). Four ITS 1 and 2 phylotypes (13 strains) could not be identified with certainty. Multigene phylogenetic analysis and phenotype profiling of four strains with an ITS1 and 2 phylotype similar to Trichoderma strigosum revealed a new sister species of the latter that is described here as Trichoderma strigosellum sp. nov. Sequence similarity searches revealed that this species also occurs in soils of Malaysia and Cameroon, suggesting a pantropical distribution.
    Matched MeSH terms: Trichoderma/isolation & purification
  4. Siddiquee S, Yusof NA, Salleh AB, Abu Bakar F, Heng LY
    Bioelectrochemistry, 2010 Aug;79(1):31-6.
    PMID: 19945357 DOI: 10.1016/j.bioelechem.2009.10.004
    A new electrochemical biosensor is described for voltammetric detection of gene sequence related to Trichoderma harzianum. The sensor involves immobilization of a 20 base single-stranded probe (ssDNA), which is complementary to a specific gene sequence related to T. harzianum on a gold electrode through specific adsorption. The DNA probe was used to determine the amount of target gene in solution using methylene blue (MB) as the electrochemical indicator. The covalently immobilized probe could selectively hybridize with the target DNA to form a hybrid on the surface despite the bases being attached to the electrode. The changes in the peak currents of methylene blue (MB), an electroactive label, were observed upon hybridization of probe with the target. Peak currents were found to increase in the following order: hybrid-modified AuE and the probe-modified AuE which localized to the affinity of MB. Control experiments with the non-complementary oligonucleotides were performed to assess whether the DNA biosensor responds selectively, via hybridization, to the target. DNA biosensor also able to detect microorganism at the species levels without nucleic acid amplification. The redox current was linearly related to the concentration of target oligonucleotide DNA, ranged from 1-20 ppm. Numerous factors, affecting the probe immobilization, target hybridization and indicator binding reactions are optimized to maximize the sensitivity and reduce the assay time.
    Matched MeSH terms: Trichoderma/isolation & purification
  5. Rahnama N, Foo HL, Abdul Rahman NA, Ariff A, Md Shah UK
    BMC Biotechnol, 2014;14:103.
    PMID: 25496491 DOI: 10.1186/s12896-014-0103-y
    BACKGROUND: Rice straw has shown to be a promising agricultural by-product in the bioconversion of biomass to value-added products. Hydrolysis of cellulose, a main constituent of lignocellulosic biomass, is a requirement for fermentable sugar production and its subsequent bioconversion to biofuels such as biobutanol. The high cost of commercial enzymes is a major impediment to the industrial application of cellulases. Therefore, the use of local microbial enzymes has been suggested. Trichoderma harzianum strains are potential CMCase and β-glucosidase producers. However, few researches have been reported on cellulase production by T. harzianum and the subsequent use of the crude cellulase for cellulose enzymatic hydrolysis. For cellulose hydrolysis to be efficiently performed, the presence of the whole set of cellulase components including exoglucanase, endoglucanase, and β-glucosidase at a considerable concentration is required. Biomass recalcitrance is also a bottleneck in the bioconversion of agricultural residues to value-added products. An effective pretreatment could be of central significance in the bioconversion of biomass to biofuels.

    RESULTS: Rice straw pretreated using various concentrations of NaOH was subjected to enzymatic hydrolysis. The saccharification of rice straw pretreated with 2% (w/v) NaOH using crude cellulase from local T. harzianum SNRS3 resulted in the production of 29.87 g/L reducing sugar and a yield of 0.6 g/g substrate. The use of rice straw hydrolysate as carbon source for biobutanol fermentation by Clostridium acetobutylicum ATCC 824 resulted in an ABE yield, ABE productivity, and biobutanol yield of 0.27 g/g glucose, 0.04 g/L/h and 0.16 g/g glucose, respectively. As a potential β-glucosidase producer, T. harzianum SNRS3 used in this study was able to produce β-glucosidase at the activity of 173.71 U/g substrate. However, for cellulose hydrolysis to be efficient, Filter Paper Activity at a considerable concentration is also required to initiate the hydrolytic reaction. According to the results of our study, FPase is a major component of cellulose hydrolytic enzyme complex system and the reducing sugar rate-limiting enzyme.

    CONCLUSION: Our study revealed that rice straw hydrolysate served as a potential substrate for biobutanol production and FPase is a rate-limiting enzyme in saccharification.

    Matched MeSH terms: Trichoderma/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links