Browse publications by year: 2018

  1. Panou V, Gadiraju M, Wolin A, Weipert CM, Skarda E, Husain AN, et al.
    J Clin Oncol, 2018 Oct 01;36(28):2863-2871.
    PMID: 30113886 DOI: 10.1200/JCO.2018.78.5204
    PURPOSE: The aim of the current study was to determine the prevalence and clinical predictors of germline cancer susceptibility mutations in patients with malignant mesothelioma (MM).

    METHODS: We performed targeted capture and next-generation sequencing of 85 cancer susceptibility genes on germline DNA from 198 patients with pleural, peritoneal, and tunica vaginalis MM.

    RESULTS: Twenty-four germline mutations were identified in 13 genes in 23 (12%) of 198 patients. BAP1 mutations were the most common (n = 6; 25%). The remaining were in genes involved in DNA damage sensing and repair (n = 14), oxygen sensing (n = 2), endosome trafficking (n = 1), and cell growth (n = 1). Pleural site (odds ratio [OR], 0.23; 95% CI, 0.10 to 0.58; P < .01), asbestos exposure (OR, 0.28; 95% CI, 0.11 to 0.72; P < .01), and older age (OR, 0.95; 95% CI, 0.92 to 0.99; P = .01) were associated with decreased odds of carrying a germline mutation, whereas having a second cancer diagnosis (OR, 3.33; 95% CI, 1.22 to 9.07; P = .02) significantly increased the odds. The odds of carrying a mutation in BAP1 (OR, 1,658; 95% CI, 199 to 76,224; P < .001), BRCA2 (OR, 5; 95% CI, 1.0 to 14.7; P = .03), CDKN2A (OR, 53; 95% CI, 6 to 249; P < .001), TMEM127 (OR, 88; 95% CI, 1.7 to 1,105; P = .01), VHL (OR, 51; 95% CI, 1.1 to 453; P = .02), and WT1 (OR, 20; 95% CI, 0.5 to 135; P = .049) were significantly higher in MM cases than in a noncancer control population. Tumor sequencing identified mutations in a homologous recombination pathway gene in 52% (n = 29 of 54).

    CONCLUSION: A significant proportion of patients with MM carry germline mutations in cancer susceptibility genes, especially those with peritoneal MM, minimal asbestos exposure, young age, and a second cancer diagnosis. These data support clinical germline genetic testing for patients with MM and provide a rationale for additional investigation of the homologous recombination pathway in MM.

    MeSH terms: Adult; Aged; Aged, 80 and over; Female; Humans; Lung Neoplasms/genetics*; Male; Mesothelioma/genetics*; Middle Aged; Germ-Line Mutation/genetics*; Genetic Predisposition to Disease/genetics; Young Adult; High-Throughput Nucleotide Sequencing
  2. Perak AM, Benuck I
    Pediatr Ann, 2018 Dec 01;47(12):e479-e486.
    PMID: 30543376 DOI: 10.3928/19382359-20181115-01
    The origins of cardiovascular disease are at the beginning of life, and national guidelines recommend evaluation for cardiovascular risk factors such as obesity and hypertension as part of general pediatric care. In this review, a simple plan is proposed for clear and consistent monitoring and messaging throughout childhood, based on the American Heart Association's "cardiovascular health" construct. A framework is provided for age-appropriate scoring of the cardiovascular health components, including diet, physical activity and screen time, sleep, smoking exposure, body mass index, blood pressure, cholesterol, and glucose. Guidance is provided for evidence-based, efficient intervention by pediatric clinicians to preserve or restore cardiovascular health. Finally, anticipated near-term advances in pediatric cardiovascular health promotion are previewed. [Pediatr Ann. 2018;47(12):e479-e486.].
    MeSH terms: Cardiovascular Diseases/diagnosis; Cardiovascular Diseases/etiology; Cardiovascular Diseases/prevention & control*; Child; Health Promotion; Humans; Pediatrics; Risk Factors; Practice Guidelines as Topic; Risk Assessment; Healthy Lifestyle
  3. Akhabue E, Perak AM, Chan C, Greenland P, Allen NB
    J Pediatr, 2018 Nov;202:98-105.e6.
    PMID: 30177351 DOI: 10.1016/j.jpeds.2018.07.023
    OBJECTIVE: To assess whether racial differences in rates of change in body mass index (BMI) and blood pressure (BP) percentiles emerge during distinct periods of childhood.

    STUDY DESIGN: In this retrospective cohort study, we included children aged 5-20 years who received regular outpatient care at a large academic medical center between January 1996 and April 2016. BMI was expressed as age- and sex-specific percentiles and BP as age-, sex-, and height-specific percentiles. Linear mixed models incorporating linear spline functions with 2 breakpoints at 9 and 12 years of age were used to estimate the changes in BMI and BP percentiles over time during age periods: <9, 9-<12, and >12 years of age.

    RESULTS: Among 5703 children (24.8% black, 10.1% Hispanic), Hispanic females had an increased rate of change in BMI percentile per year relative to white females during ages 5-9 years (+2.94%; 95% CI, 0.24-5.64; P = .033). Black and Hispanic males also had an increased rate of change in BMI percentile per year relative to white males that occurred from ages 5-9 (+2.35% [95% CI, 0.76-3.94; P = .004]; +2.63% [95% CI, 0.31-4.95; P = .026], respectively). There were no significant racial differences in the rate of change of BP percentiles, although black females had higher hypertension rates compared with white females (10.0% vs 5.7%; P 

    MeSH terms: Adolescent; Blood Pressure*; Child; Child, Preschool; Female; Humans; Hypertension/ethnology; Illinois/epidemiology; Male; Retrospective Studies; Cohort Studies; Body Mass Index*; Linear Models; Continental Population Groups/statistics & numerical data*; Pediatric Obesity/ethnology
  4. Hakkimane SS, Shenoy VP, Gaonkar SL, Bairy I, Guru BR
    Int J Nanomedicine, 2018;13:4303-4318.
    PMID: 30087562 DOI: 10.2147/IJN.S163925
    INTRODUCTION: Tuberculosis (TB) is the single largest infectious disease which requires a prolonged treatment regime with multiple drugs. The present treatment for TB includes frequent administration of a combination of four drugs for a duration of 6 months. This leads to patient's noncompliance, in addition to developing drug-resistant strains which makes treatment more difficult. The formulation of drugs with biodegradable polymeric nanoparticles (NPs) promises to overcome this problem.

    MATERIALS AND METHODS: In this study, we focus on two important drugs used for TB treatment - rifampicin (RIF) and isoniazid (INH) - and report a detailed study of RIF-loaded poly lactic-co-glycolic acid (PLGA) NPs and INH modified as INH benz-hydrazone (IH2) which gives the same therapeutic effect as INH but is more stable and enhances the drug loading in PLGA NPs by 15-fold compared to INH. The optimized formulation was characterized using particle size analyzer, scanning electron microscopy and transmission electron microscopy. The drug release from NPs and stability of drug were tested in different pH conditions.

    RESULTS: It was found that RIF and IH2 loaded in NPs release in a slow and sustained manner over a period of 1 month and they are more stable in NPs formulation compared to the free form. RIF- and IH2-loaded NPs were tested for antimicrobial susceptibility against Mycobacterium tuberculosis H37Rv strain. RIF loaded in PLGA NPs consistently inhibited the growth at 70% of the minimum inhibitory concentration (MIC) of pure RIF (MIC level 1 µg/mL), and pure IH2 and IH2-loaded NPs showed inhibition at MIC equivalent to the MIC of INH (0.1 µg/mL).

    CONCLUSION: These results show that NP formulations will improve the efficacy of drug delivery for TB treatment.

    MeSH terms: RAW 264.7 Cells; Animals; Antitubercular Agents/pharmacology*; Antitubercular Agents/chemistry; Biocompatible Materials/chemistry*; Chromatography, High Pressure Liquid; Drug Compounding; Humans; Isoniazid/pharmacology*; Isoniazid/therapeutic use; Microbial Sensitivity Tests; Mycobacterium tuberculosis/drug effects*; Particle Size; Polyglycolic Acid/chemistry; Polymers/chemistry*; Rifampin/pharmacology*; Rifampin/therapeutic use; Surface Tension; Tuberculosis/drug therapy; Drug Delivery Systems; Cell Death/drug effects; Lactic Acid/chemistry; Mice; Nanoparticles/ultrastructure; Nanoparticles/chemistry*; Static Electricity; Chromatography, Reverse-Phase; Drug Liberation; Proton Magnetic Resonance Spectroscopy; A549 Cells
  5. Abu Qamar M, Hassan N
    Entropy (Basel), 2018 Sep 05;20(9).
    PMID: 33265761 DOI: 10.3390/e20090672
    The idea of the Q-neutrosophic soft set emerges from the neutrosophic soft set by upgrading the membership functions to a two-dimensional entity which indicate uncertainty, indeterminacy and falsity. Hence, it is able to deal with two-dimensional inconsistent, imprecise, and indeterminate information appearing in real life situations. In this study, the tools that measure the similarity, distance and the degree of fuzziness of Q-neutrosophic soft sets are presented. The definitions of distance, similarity and measures of entropy are introduced. Some formulas for Q-neutrosophic soft entropy were presented. The known Hamming, Euclidean and their normalized distances are generalized to make them well matched with the idea of Q-neutrosophic soft set. The distance measure is subsequently used to define the measure of similarity. Lastly, we expound three applications of the measures of Q-neutrosophic soft sets by applying entropy and the similarity measure to a medical diagnosis and decision making problems.
  6. Otitoju TA, Ahmad AL, Ooi BS
    RSC Adv, 2018 Jun 19;8(40):22710-22728.
    PMID: 35539743 DOI: 10.1039/c8ra03296c
    The blending of additives in the polyethersulfone (PES) matrix is an important approach in the membrane industry to reduce membrane hydrophobicity and improve the performance (flux, solute rejection, and reduction of fouling). Several (hydrophilic) modifications of the PES membrane have been developed. Given the importance of the hydrophilic modification methods for PES membranes and their applications, we decided to dedicate this review solely to this topic. The types of additives embedded into the PES matrix can be divided into two main categories: (i) polymers and (ii) inorganic nanoparticles (NPs). The introduced polymers include polyvinylpyrrolidone, chitosan, polyamide, polyethylene oxide, and polyethylene glycol. The introduced nanoparticles discussed include titanium, iron, aluminum, silver, zirconium, silica, magnesium based NPs, carbon, and halloysite nanotubes. In addition, the applications of hydrophilic PES membranes are also reviewed. Reviewing the research progress in the hydrophilic modification of PES membranes is necessary and imperative to provide more insights for their future development and perhaps to open the door to extend their applications to other more challenging areas.
  7. Momina, Shahadat M, Isamil S
    RSC Adv, 2018 Jul 02;8(43):24571-24587.
    PMID: 35539168 DOI: 10.1039/c8ra04290j
    The present review covers the regeneration capacity and adsorption efficiency of different adsorbents for the treatment of industrial dyes to control water pollution. Various techniques and materials have been employed to remove organic pollutants from water; however, adsorption techniques using cost-effective, ecofriendly, clay-supported adsorbents are widely used owing to their simplicity and good efficiency. Among all the natural adsorbents, activated carbon has been found to be the most effective for dye adsorption; however, its use is restricted due to its high regeneration cost. Clays and modified clay-based adsorbents are the most efficient clarifying agents for organic pollutants as compared to activated carbon, organic/inorganic, and composite materials. Regeneration is an important aspect to stimulate the adsorption efficiency of the exhausted/spent adsorbent for water treatment. A number of techniques, including chemical treatment, supercritical extraction, thermal, and photocatalytic and biological degradation, have been developed to regenerate spent or dye-adsorbed clays. This review discusses how these techniques enhance the adsorption and retention potential of spent low-cost adsorbents and reflects on the future perspectives for their use in wastewater treatment.
  8. Perak AM, Marino BS, de Ferranti SD
    Pediatrics, 2018 Apr;141(4).
    PMID: 29588338 DOI: 10.1542/peds.2017-2075
    MeSH terms: American Heart Association*; Cardiovascular Diseases/epidemiology; Cardiovascular Diseases/prevention & control*; Cardiovascular Physiological Phenomena*; Health Status*; Humans; Longevity/physiology*; United States/epidemiology
  9. Lim FPL, Tan LY, Tiekink ERT, Dolzhenko AV
    RSC Adv, 2018 Jun 08;8(38):21495-21504.
    PMID: 35539915 DOI: 10.1039/c8ra03703e
    A highly selective, one-pot, three-component synthesis of novel 2-alkyl-substituted 4-aminoimidazo[1,2-a][1,3,5]triazines has been developed. The scope of the method was explored in two dimensions, varying the structures of trialkyl orthoesters and 2-aminoimidazoles in their reactions with cyanamide. Conveniently performed under microwave irradiation, this method was also proved to be efficient under conventional heating. A library of 24 novel compounds was prepared in high purity using this multicomponent approach. Molecular and crystal structures of representative molecules were studied using X-ray crystallography.
  10. Narayanamurthy V, Padmapriya P, Noorasafrin A, Pooja B, Hema K, Firus Khan AY, et al.
    RSC Adv, 2018 Aug 02;8(49):28095-28130.
    PMID: 35542700 DOI: 10.1039/c8ra04164d
    Skin cancer is the most common form of cancer and is globally rising. Historically, the diagnosis of skin cancers has depended on various conventional techniques which are of an invasive manner. A variety of commercial diagnostic tools and auxiliary techniques are available to detect skin cancer. This article explains in detail the principles and approaches involved for non-invasive skin cancer diagnostic methods such as photography, dermoscopy, sonography, confocal microscopy, Raman spectroscopy, fluorescence spectroscopy, terahertz spectroscopy, optical coherence tomography, the multispectral imaging technique, thermography, electrical bio-impedance, tape stripping and computer-aided analysis. The characteristics of an ideal screening test are outlined, and the authors pose several points for clinicians and scientists to consider in the evaluation of current and future studies of skin cancer detection and diagnosis. This comprehensive review critically analyses the literature associated with the field and summarises the recent updates along with their merits and demerits.
  11. Harruddin N, Saufi SM, Faizal CKM, Mohammad AW
    RSC Adv, 2018 Jul 16;8(45):25396-25408.
    PMID: 35539815 DOI: 10.1039/c8ra03392g
    In this study, the removal of acetic acid by supported liquid membrane (SLM) using hybrid polyethersulfone (PES)-graphene membrane prepared by vapor induced phase separation (VIPS) was investigated. The effects of graphene loading, coagulation bath temperature, air exposure time, and air humidity on the morphology, mechanical strength, porosity, and contact angle of the membrane were analyzed. The performance and stability of the hybrid membrane as a SLM support for acetic acid removal were studied. The best PES-graphene membrane support was produced at a coagulation bath temperature of 50 °C, an air exposure time of 30 s and air humidity of 80%. The fabricated membrane has a symmetrical micropore cellular structure, high porosity and high contact angle. Under specific SLM conditions, almost 95% of acetic acid was successfully removed from 10 g L-1 aqueous acetic acid solution. The hybrid membrane remains stable for more than 116 h without suffering any membrane breakage during the continuous SLM process.
  12. Md Yusoff M, Yahaya N, Md Saleh N, Raoov M
    RSC Adv, 2018 Jul 16;8(45):25617-25635.
    PMID: 35539765 DOI: 10.1039/c8ra03408g
    This study investigated the effectiveness of ionic liquids (ILs) loaded onto the surface of a polymeric adsorbent (βCD-TDI) grafted with modified magnetic nanoparticles (MNPs) via an analysis of water treatment, which resulted in high removal of selected endocrine-disrupting chemicals (parabens). The syntheses of MNPs, MNP-βCD-TDI, and IL-MNP-βCD-TDI were characterised and compared using Fourier transform infrared (FT-IR) spectroscopy, carbon-hydrogen-nitrogen (CHN) analysis, vibrating sample magnetometry (VSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunauer-Emmett-Teller (BET) method, thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The results of SEM and TEM indicated that the pore size distribution exhibited mesoporous characteristics with a small surface area (BET analysis: 42.95 m2 g-1). Furthermore, a preliminary sorption experiment demonstrated the ability of IL-MNP-βCD-TDI to enhance not only the sorption capacity, but also the removal of propyl paraben (PP), butyl paraben (BP), and benzyl paraben (ArP). The adsorption process appeared to be pH-dependent, and hence the optimum pH of 6 was selected for a subsequent batch adsorption study of all the studied parabens with an equilibrium time of 80 min. Next, in an attempt to investigate the interactions that occur between the adsorbent and the adsorbates, adsorption kinetics and isotherm studies were performed. All the studied parabens were found to best fit pseudo-second-order kinetics and the Freundlich isotherm with R 2 > 0.98 at room temperature (298 K). The interaction of the host-guest inclusion complex and the π-π interaction between βCD and a selected paraben compound (ArP) were identified by performing 1H nuclear magnetic resonance (NMR), together with ultraviolet-visible (UV-vis) spectroscopic analysis. Finally, the adsorption efficiency of the developed material was practically tested on tap water, drain water, and industrial wastewater, which revealed a significant removal of parabens of up to 60-90% in comparison with a prior analysis.
  13. Awale RJ, Ali FB, Azmi AS, Puad NIM, Anuar H, Hassan A
    Polymers (Basel), 2018 Sep 02;10(9).
    PMID: 30960902 DOI: 10.3390/polym10090977
    The brittleness of polylactic acid (PLA) has always limited its usage, although it has good mechanical strength. In this study, flexibility of PLA/starch (PSt) blend was enhanced using epoxidized palm oil (EPO) as the green plasticizer. The PLA/starch/EPO (PSE) blends were prepared while using the solution casting method by fixing the content of starch and varying ratio of EPO. The thermal properties, such as glass transition temperature (Tg), melting temperature (Tm), and crystallization temperature (Tcc) were decreased by increasing the amount of EPO into PSt, indicating that EPO increases the chain mobility. Thermogravimetric analysis (TGA) showed that thermal degradation resistance of PSE was higher when compared to PSt. The mechanical testing revealed that EPO at all contents improved the mechanical properties, such as increment of the elongation-at-break and impact strength. Whereas, dynamic mechanical analysis showed that the addition of filler into PLA decreased the storage modulus of PLA. The carbonyl group of the aliphatic ester remained the same in the PSE blends. The morphological study verified the ductility of PSE blends surface when compared to the brittle surface of PSt. As for the soil burial tests, EPO accelerated the degradation of blends. From these results, it can be concluded that EPO improved the flexibility of PLA blends.
  14. Kharitonov AE, Surdina AV, Lebedeva OS, Bogomazova AN, Lagarkova MA
    Acta Naturae, 2018;10(3):30-39.
    PMID: 30397524
    The retinal pigment epithelium is a monolayer of pigmented, hexagonal cells connected by tight junctions. These cells compose part of the outer blood-retina barrier, protect the eye from excessive light, have important secretory functions, and support the function of photoreceptors, ensuring the coordination of a variety of regulatory mechanisms. It is the degeneration of the pigment epithelium that is the root cause of many retinal degenerative diseases. The search for reliable cell sources for the transplantation of retinal pigment epithelium is of extreme urgency. Pluripotent stem cells (embryonic stem or induced pluripotent) can be differentiated with high efficiency into the pigment epithelium of the retina, which opens up possibilities for cellular therapy in macular degeneration and can slow down the development of pathology and, perhaps, restore a patient's vision. Pioneering clinical trials on transplantation of retinal pigment epithelial cells differentiated from pluripotent stem cells in the United States and Japan confirmed the need for developing and optimizing such approaches to cell therapy. For effective use, pigment epithelial cells differentiated from pluripotent stem cells should have a set of functional properties characteristic of such cells in vivo. This review summarizes the current state of preclinical and clinical studies in the field of retinal pigment epithelial transplantation therapy. We also discuss different differentiation protocols based on data in the literature and our own data, and the problems holding back the widespread therapeutic application of retinal pigment epithelium differentiated from pluripotent stem cells.
  15. Singh JSK, Ching YC, Liu S, Ching KY, Razali S, Gan SN
    Materials (Basel), 2018 Nov 02;11(11).
    PMID: 30400137 DOI: 10.3390/ma11112164
    Reinforcing polyoxymethylene (POM) with glass fibers (GF) enhances its mechanical properties, but at the expense of tribological performance. Formation of a transfer film to facilitate tribo-contact is compromised due to the abrasiveness of GF. As a solid lubricant, for example, polytetrafluoroethylene (PTFE) significantly improves friction and wear resistance. The effects of chemically etched PTFE micro-particles on the fiber-matrix interface of POM/GF/PTFE composites have not been systematically characterized. The aim of this study is to investigate their tribological performance as a function of micro-PTFE blended by weight percentage. Samples were prepared by different compositions of PTFE (0, 1.7, 4.0, 9.5, 15.0 and 17.3 wt.%). The surface energy of PTFE micro-particles was increased by etching for 10 min using sodium naphthalene salt in tetrahydrofuran. Tribological performance was characterized through simultaneous acquisition of the coefficient of friction and wear loss on a reciprocating test rig in accordance to Procedure A of ASTM G133-95. Friction and wear resistance improved as the micro-PTFE weight ratio was increased. Morphology analysis of worn surfaces showed transfer film formation, encapsulating the abrasive GF. Energy dispersive X-ray spectroscopy (EDS) revealed increasing PTFE concentration from the GF surface interface region (0.5, 1.0, 1.5, 2.0, 2.5 µm).
  16. Harun SNA, Israf DA, Tham CL, Lam KW, Cheema MS, Md Hashim NF
    Molecules, 2018 Apr 10;23(4).
    PMID: 29642589 DOI: 10.3390/molecules23040865
    In order to metastasize, tumor cells need to migrate and invade the surrounding tissues. It is important to identify compound(s) capable of disrupting the metastasis of invasive cancer cells, especially for hindering invadopodia formation, so as to provide anti-metastasis targeted therapy. Invadopodia are thought to be specialized actin-rich protrusions formed by highly invasive cancer cells to degrade the extracellular matrix (ECM). A curcuminoid analogue known as 2,6-bis-(4-hydroxy-3-methoxybenzylidine)cyclohexanone or BHMC has shown good potential in inhibiting inflammation and hyperalgesia. It also possesses an anti-tumor effects on 4T1 murine breast cancer cells in vivo. However, there is still a lack of empirical evidence on how BHMC works in preventing human breast cancer invasion. In this study, we investigated the effect of BHMC on MDA-MB-231 breast cancer cells and its underlying mechanism of action to prevent breast cancer invasion, especially during the formation of invadopodia. All MDA-MB-231 cells, which were exposed to the non-cytotoxic concentrations of BHMC, expressed the proliferating cell nuclear antigen (PCNA), which indicate that the anti-proliferative effects of BHMC did not interfere in the subsequent experiments. By using a scratch migration assay, transwell migration and invasion assays, we determined that BHMC reduces the percentage of migration and invasion of MDA-MB-231 cells. The gelatin degradation assay showed that BHMC reduced the number of cells with invadopodia. Analysis of the proteins involved in the invasion showed that there is a significant reduction in the expressions of Rho guanine nucleotide exchange factor 7 (β-PIX), matrix metalloproteinase-9 (MMP-9), and membrane type 1 matrix metalloproteinase (MT1-MMP) in the presence of BHMC treatment at 12.5 µM. Therefore, it can be postulated that BHMC at 12.5 µM is the optimal concentration for preventing breast cancer invasion.
    MeSH terms: Antineoplastic Agents/pharmacology*; Breast Neoplasms/drug therapy; Breast Neoplasms/metabolism*; Cell Movement/drug effects; Curcumin/analogs & derivatives*; Curcumin/pharmacology; Cyclohexanones/pharmacology*; Female; Humans; Gene Expression Regulation, Neoplastic/drug effects; Proliferating Cell Nuclear Antigen/metabolism; Matrix Metalloproteinase 9/metabolism; Cell Line, Tumor; Matrix Metalloproteinase 14/metabolism; Rho Guanine Nucleotide Exchange Factors/metabolism
  17. Hanan NA, Chiu HI, Ramachandran MR, Tung WH, Mohamad Zain NN, Yahaya N, et al.
    Int J Mol Sci, 2018 Jun 11;19(6).
    PMID: 29891772 DOI: 10.3390/ijms19061725
    In the field of medicine, nanomaterials, especially those derived using the green method, offer promise as anti-cancer agents and drug carriers. However, the biosafety of metallic nanoparticles used as anti-cancer agents remains a concern. The goal of this systematic review was to compare the cytotoxicity of different plant-mediated syntheses of metallic nanoparticles based on their potency, therapeutic index, and cancer cell type susceptibility in the hopes of identifying the most promising anti-cancer agents. A literature search of electronic databases including Science Direct, PubMed, Springer Link, Google Scholar, and ResearchGate, was conducted to obtain research articles. Keywords such as biosynthesis, plant synthesis, plant-mediated, metallic nanoparticle, cytotoxicity, and anticancer were used in the literature search. All types of research materials that met the inclusion criteria were included in the study regardless of whether the results were positive, negative, or null. The therapeutic index was used as a safety measure for the studied compound of interest. Data from 76 selected articles were extracted and synthesised. Seventy-two studies reported that the cytotoxicity of plant-mediated synthesis of metallic nanoparticles was time and/or dose-dependent. Biosynthesised silver nanoparticles demonstrated higher cytotoxicity potency compared to gold nanoparticles synthesised by the same plants (Plumbago zeylanica, Commelina nudiflora, and Cassia auriculata) irrespective of the cancer cell type tested. This review also identified a correlation between the nanoparticle size and morphology with the potency of cytotoxicity. Cytotoxicity was found to be inversely proportional to nanoparticle size. The plant-mediated syntheses of metallic nanoparticles were predominantly spherical or quasi-spherical, with the median lethal dose of 1⁻20 µg/mL. Nanoparticles with other shapes (triangular, hexagonal, and rods) were less potent. Metallic nanoparticles synthesised by Abutilon inducum, Butea monosperma, Gossypium hirsutum, Indoneesiella echioides, and Melia azedarach were acceptably safe as anti-cancer agents, as they had a therapeutic index of >2.0 when tested on both cancer cells and normal human cells. Most plant-mediated syntheses of metallic nanoparticles were found to be cytotoxic, although some were non-cytotoxic. The results from this study suggest a focus on a selected list of potential anti-cancer agents for further investigations of their pharmacodynamic/toxicodynamic and pharmacokinetic/toxicokinetic actions with the goal of reducing the Global Burden of Diseases and the second leading cause of mortality.
    MeSH terms: Animals; Gold/toxicity*; Humans; Particle Size; Plants/metabolism*; Metal Nanoparticles/toxicity*
  18. Bagheri E, Hajiaghaalipour F, Nyamathulla S, Salehen NA
    RSC Adv, 2018 Jan 02;8(2):681-689.
    PMID: 35538944 DOI: 10.1039/c7ra09618f
    Brucea javanica (L.) Merr. is a well-known plant in Chinese System of Medicine. Its fruits and seeds have been reported to possess curative properties against various ailments. The chemical constituents and biological activity of this plant have been an interesting area in plant and chemistry medicine. The aim of this study is to evaluate the antiproliferative effects of the B. javanica extract against a colon cancer cell line and identification of the chemical components derived from the extract. An ethanolic extract from B. javanica fruits was prepared by cold maceration method, subjected to LC-MS profiling to elucidate the composition abbreviated as BJEE. The extract was screened for the cytotoxicity effects on HCT-116 colon cancer cells via MTT and LDH methods. Additionally, AO/PI staining verified apoptosis features in HCT-116 cells through microscopic analysis. ROS, caspase activity, and gene expression has been performed to identify its possible mechanism of actions which contribute to apoptosis. Output data from this study showed BJEE inhibited the cell proliferation of HCT-116 colon cancer cells at IC50 value of 8.9 ± 1.32 (μg mL-1) and significantly increased the levels of caspase-8, 9, and 3/7 in treated cells in comparison to untreated. The changes in expression of caspase genes and some apoptosis genes like Bax and Bcl-2 were confirmed using RT-PCR. Phytochemical analysis by LC-MS identified six major active compounds (bruceine D, isobrucein A, quassimarin, C16 sphinganine, phytosphingosine, and enigmol) in BJEE that may play a key role in cell apoptosis. The current study showed BJEE could be a promising agent for colorectal cancer therapy by significant increase in caspase activity level, and up-regulation of the specific apoptotic genes.
  19. Hossain MA, Mohamed Iqbal MA, Julkapli NM, San Kong P, Ching JJ, Lee HV
    RSC Adv, 2018 Jan 29;8(10):5559-5577.
    PMID: 35542409 DOI: 10.1039/c7ra11824d
    Biomass-derived oils are recognised as the most promising renewable resources for the production of ester-based biolubricants due to their biodegradable, non-toxic and metal adhering properties. Homogeneous acid catalysts have been conventionally used in catalytic esterification and transesterification for the synthesis of ester-based biolubricants. Although homogeneous acid catalysts encounter difficulty during phase separation, they exhibit superior selectivity and good stereochemistry and regiochemistry control in the reaction. Consequently, transition metal complex catalysts (also known as homogeneous organometallic catalysts) are proposed for biolubricant synthesis in order to achieve a higher selectivity and conversion. Herein, the potential of both homogeneous transition metal complexes and heterogeneous supported metal complexes towards the synthesis of biolubricants, particularly, in esterification and transesterification, as well as the upgrading process, including hydrogenation and in situ hydrogenation-esterification, is critically reviewed.
  20. Sukumaran SD, Faraj FL, Lee VS, Othman R, Buckle MJC
    RSC Adv, 2018 Feb 14;8(14):7818-7831.
    PMID: 35539141 DOI: 10.1039/c7ra11872d
    A series of 2-aryl-3-(arylideneamino)-1,2-dihydroquinazoline-4(3H)-ones were evaluated as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and self-induced β-amyloid (Aβ) aggregation. All the compounds were found to inhibit both forms of cholinesterase (IC50 in the range 4-32 μM) with some selectivity for BuChE. Most of the compounds also showed self-induced Aβ aggregation inhibitory activities, which were comparable or higher than those obtained for reference compounds, curcumin and myricetin. Docking and molecular dynamics (MD) simulation experiments suggested that the compounds are able to disrupt the dimer form of Aβ.
External Links